|
import streamlit as st |
|
from sklearn import neighbors, datasets |
|
|
|
with st.form(key='my_form'): |
|
sLen = st.slider('Sepal lenght (cm.)', 0.0, 10.0) |
|
sWid = st.slider('Sepal width (cm.)', 0.0, 10.0) |
|
pLen = st.slider('Petal lenght (cm.)', 0.0, 10.0) |
|
pWid = st.slider('Pepal width (cm.)', 0.0, 10.0) |
|
st.form_submit_button('Predict') |
|
|
|
iris = datasets.load_iris() |
|
X,y = iris.data, iris.target |
|
knn = neighbors.KNeighborsClassifier(n_neighbors=2) |
|
knn.fit(X,y) |
|
predict = knn.predict([[sLen,sWid,pLen,pWid]]) |
|
st.text(iris.target_names[predict]) |