# %% app.ipynb 1 import gradio as gr from fastai.vision.all import * # %% app.ipynb 2 learn = load_learner('pets-model.pkl') labels = learn.dls.vocab # %% app.ipynb 3 def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} # %% app.ipynb 4 title = "Pet Breed Classifier" description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." article = "
" #interpretation = 'default' interpretation = 'shap' enable_queue = True # %% app.ipynb 5 image = gr.inputs.Image(shape=(224,224)) label = gr.outputs.Label(num_top_classes=3) examples = ['british.jpg', 'newfoundland.jpg', 'shiba.jpg'] # %% app.ipynb 6 intf = gr.Interface(fn=predict, inputs=image, outputs=label, title=title, description=description, article=article, examples=examples, interpretation=interpretation, enable_queue=enable_queue) intf.launch(inline=False)