Spaces:
Sleeping
Sleeping
import streamlit as st | |
import cv2 | |
from ultralytics import YOLO | |
import cvzone | |
import math | |
import pygame | |
import numpy as np | |
# Initialize pygame mixer | |
pygame.mixer.init() | |
# Load sound | |
alert_sound = pygame.mixer.Sound('alarm.mp3') | |
# Load the model | |
model = YOLO('best.pt') | |
# Reading the classes | |
classnames = ['Drowsy', 'Awake'] | |
# Streamlit UI | |
st.set_page_config(layout="wide") # Set wide layout | |
# Add the logo to the sidebar | |
logo_path = "logo.png" # Use the uploaded file path | |
st.sidebar.empty() # Add empty space | |
st.sidebar.image(logo_path, use_column_width=True) | |
# Create a sidebar for navigation | |
st.sidebar.title("Options") | |
page = st.sidebar.selectbox("Choose a page", ["Webcam Detection", "Image Upload"]) | |
st.title("Drowsiness Detection") | |
if page == "Webcam Detection": | |
st.header("Real-Time Drowsiness Detection") | |
# Layout | |
col1, col2 = st.columns(2) | |
with col1: | |
start_button = st.button('Start Webcam') | |
with col2: | |
stop_button = st.button('Stop Webcam') | |
alert_placeholder = st.empty() # Placeholder for alerts | |
stframe = st.empty() | |
status_text = st.empty() | |
message_text = st.empty() | |
if start_button: | |
cap = cv2.VideoCapture(0) | |
drowsy_count = 0 # Counter for consecutive "Drowsy" detections | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
status_text.write("Failed to grab frame") | |
break | |
frame = cv2.resize(frame, (640, 480)) | |
# Run the model on the frame | |
result = model(frame, stream=True) | |
# Flag to track if "Drowsy" is detected in this frame | |
drowsy_detected = False | |
# Getting bbox, confidence, and class name information to work with | |
for info in result: | |
boxes = info.boxes | |
for box in boxes: | |
confidence = box.conf[0] | |
confidence = math.ceil(confidence * 100) | |
Class = int(box.cls[0]) | |
if confidence > 50: | |
x1, y1, x2, y2 = box.xyxy[0] | |
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) | |
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 5) | |
cvzone.putTextRect(frame, f'{classnames[Class]} {confidence}%', [x1 + 8, y1 + 100], | |
scale=1.5, thickness=2) | |
if classnames[Class] == 'Drowsy': | |
drowsy_detected = True | |
# Increment the counter if "Drowsy" is detected, otherwise reset the counter | |
if drowsy_detected: | |
drowsy_count += 1 | |
status_text.write("Drowsiness detected!") | |
else: | |
drowsy_count = 0 | |
status_text.write("Monitoring...") | |
# Play alert sound and send message if "Drowsy" is detected 3 or more times | |
if drowsy_count >= 3: | |
pygame.mixer.Sound.play(alert_sound) | |
alert_placeholder.markdown( | |
f'<div style="color: red; font-size: 24px; border: 2px solid red; padding: 10px;">**Be careful! Drowsiness detected!**</div>', | |
unsafe_allow_html=True, | |
) | |
drowsy_count = 0 # Reset the counter after playing the sound | |
# Convert image back to RGB for Streamlit | |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
# Display the image | |
stframe.image(frame, channels="RGB") | |
# Check if stop button is pressed | |
if stop_button: | |
break | |
cap.release() | |
status_text.write("Webcam stopped.") | |
message_text.write("") | |
alert_placeholder.empty() | |
elif page == "Image Upload": | |
st.header("Drowsiness Detection on Image") | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
# Read the image | |
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8) | |
frame = cv2.imdecode(file_bytes, 1) | |
# Perform prediction | |
results = model(frame, stream=True) | |
# Process the results | |
for result in results: | |
boxes = result.boxes | |
for box in boxes: | |
confidence = box.conf[0] | |
confidence = math.ceil(confidence * 100) | |
Class = int(box.cls[0]) | |
if confidence > 50: | |
x1, y1, x2, y2 = box.xyxy[0] | |
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) | |
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 5) | |
cv2.putText(frame, f'{classnames[Class]} {confidence}%', (x1 + 8, y1 + 100), | |
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, cv2.LINE_AA) | |
# Convert image back to RGB for Streamlit | |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
# Display the image | |
st.image(frame, channels="RGB") |