import streamlit as st import pandas as pd import numpy as np # from scipy.special import softmax # import os from utils import run_sentiment_analysis, preprocess from transformers import AutoTokenizer, AutoConfig,AutoModelForSequenceClassification import os import time # Requirements model_path = "bright1/fine-tuned-distilbert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(model_path) config = AutoConfig.from_pretrained(model_path) model = AutoModelForSequenceClassification.from_pretrained(model_path) # dark_theme = set_theme() st.set_page_config( page_title="Tweet Analyzer", page_icon="🤖", initial_sidebar_state="expanded", menu_items={ 'About': "# This is a header. This is an *extremely* cool app!" } ) my_expander = st.container() # st.sidebar.selectbox('Menu', ['About', 'Model']) with my_expander: st.markdown(""" """, unsafe_allow_html=True) st.title(':green[Covid-19 Vaccines Tweets Analyzer]') st.sidebar.markdown(""" ## Demo App This app analyzes your tweets on covid vaccines and classifies them us Neutral, Negative or Positive """) # my_expander.write('Container') # create a three column layout col1, col2, col3 = st.columns((1.6, 1,0.3)) # col2.markdown(""" #

# Results from Analyzer #

# """,unsafe_allow_html=True) st.markdown(""" """, unsafe_allow_html=True) tweet = col1.text_area('Tweets to analyze',height=200, max_chars=520, placeholder='Write your Tweets here') colA, colb, colc, cold = st.columns(4) clear_button = colA.button(label='Clear', type='secondary', use_container_width=True) submit_button = colb.button(label='Submit', type='primary', use_container_width=True) empty_container = col2.container() empty_container.text("Results from Analyzer") empty_container2 = col3.container() empty_container2.text('Scores') text = preprocess(tweet) results = run_sentiment_analysis(text=text, model=model, tokenizer=tokenizer) if submit_button: success_message = st.success('Success', icon="✅") with empty_container: neutral = st.progress(value=results['Neutral'], text='Neutral',) negative = st.progress(value=results['Negative'], text='Negative') positive = st.progress(value=results['Positive'], text='Positive') with empty_container2: st.markdown( """ """, unsafe_allow_html=True, ) neutral_score = st.metric(label='Score', value=round(results['Neutral'], 4), label_visibility='collapsed') negative_score = st.metric(label='Score', value=round(results['Negative'], 4), label_visibility='collapsed') positive_score = st.metric(label='Score', value=round(results['Positive'], 4), label_visibility='collapsed') time.sleep(5) success_message.empty() interpret_button = col2.button(label='Interpret',type='secondary', use_container_width=True) # st.help() # create a date input to receive date