import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) import uvicorn from fastapi import FastAPI, Request, File, UploadFile from fastapi.responses import HTMLResponse, JSONResponse from fastapi.staticfiles import StaticFiles from fastapi.templating import Jinja2Templates from src.utils import load_pickle, make_prediction, process_label, process_json_csv, output_batch, return_columns from src.module import Inputs import pandas as pd import numpy as np from typing import List # Create an instance of FastAPI app = FastAPI(debug=True) # get absolute path DIRPATH = os.path.dirname(os.path.realpath(__file__)) # set path for pickle files model_path = os.path.join(DIRPATH, '..', 'assets', 'ml_components', 'model-1.pkl') transformer_path = os.path.join(DIRPATH, '..', 'assets', 'ml_components', 'preprocessor.pkl') properties_path = os.path.join(DIRPATH, '..', 'assets', 'ml_components', 'other-components.pkl') # Load the trained model, pipeline, and other properties model = load_pickle(model_path) transformer = load_pickle(transformer_path) properties = load_pickle(properties_path) # Configure static and template files app.mount("/static", StaticFiles(directory="src/app/static"), name="static") # Mount static files templates = Jinja2Templates(directory="src/app/templates") # Mount templates for HTML # Root endpoint to serve index.html template @app.get("/", response_class=HTMLResponse) async def root(request: Request): return templates.TemplateResponse("index.html", {'request': request}) # Health check endpoint @app.get("/health") def check_health(): return {"status": "ok"} # Model information endpoint @app.post('/model-info') async def model_info(): model_name = model.__class__.__name__ # get model name model_params = model.get_params() # get model parameters features = properties['train features'] # get training feature model_information = {'model info': { 'model name ': model_name, 'model parameters': model_params, 'train feature': features} } return model_information # return model information # Prediction endpoint @app.post('/predict') async def predict(plasma_glucose: float, blood_work_result_1: float, blood_pressure: float, blood_work_result_2: float, blood_work_result_3: float, body_mass_index: float, blood_work_result_4: float, age: int, insurance: bool): # Create a dataframe from inputs data = pd.DataFrame([[plasma_glucose,blood_work_result_1,blood_pressure, blood_work_result_2,blood_work_result_3,body_mass_index, blood_work_result_4, age,insurance]], columns=return_columns()) # data_copy = data.copy() # Create a copy of the dataframe labels, prob = make_prediction(data, transformer, model) # Get the labels response = output_batch(data, labels) # output results return response # Batch prediction endpoint @app.post('/predict-batch') async def predict_batch(inputs: Inputs): # Create a dataframe from inputs data = pd.DataFrame(inputs.return_dict_inputs()) data_copy = data.copy() # Create a copy of the data labels, probs = make_prediction(data, transformer, model) # Get the labels response = output_batch(data, labels) # output results return response # Upload data endpoint @app.post("/upload-data") async def upload_data(file: UploadFile = File(...)): file_type = file.content_type # get the type of the uploaded file valid_formats = ['text/csv', 'application/json'] # create a list of valid formats API can receive if file_type not in valid_formats: return JSONResponse(content={"error": f"Invalid file format. Must be one of: {', '.join(valid_formats)}"}) # return an error if file type is not included in the valid formats else: contents = await file.read() # read contents in file data= process_json_csv(contents=contents,file_type=file_type, valid_formats=valid_formats) # process files labels, probs = make_prediction(data, transformer, model) # Get the labels response = output_batch(data, labels) # output results return response # Run the FastAPI application if __name__ == '__main__': uvicorn.run('app:app', reload=True)