Spaces:
Sleeping
Sleeping
import pandas as pd | |
import numpy as np | |
import pickle | |
from io import StringIO | |
from fastapi.responses import JSONResponse | |
# from cachetools import cached, TTLCache | |
# # Define the cache | |
# cache = TTLCache(maxsize=5, ttl=3600,) # Cache with a maximum size of 1 and a TTL of 1 hour | |
# # # Load the model | |
# @cached(cache) | |
def load_pickle(filename): | |
with open(filename, 'rb') as file: | |
contents = pickle.load(file) | |
return contents | |
def feature_engineering(data): | |
data['Insurance'] = data['Insurance'].astype(int).astype(str) # run function to create new features | |
# create features | |
data['All-Product'] = data['Blood Work Result-4'] * data['Blood Work Result-1']* data['Blood Work Result-2']* data['Blood Work Result-3'] * data['Plasma Glucose']* data['Blood Pressure'] * data['Age']* data['Body Mass Index'] # Multiply all numerical features | |
all_labels =['{0}-{1}'.format(i, i+500000000000) for i in range(0, round(2714705253292.0312),500000000000)] | |
data['All-Product_range'] = pd.cut(data['All-Product'], bins=(range(0, 3500000000000, 500000000000)), right=False, labels=all_labels) | |
age_labels =['{0}-{1}'.format(i, i+20) for i in range(0, 83,20)] | |
data['Age Group'] = pd.cut(data['Age'], bins=(range(0, 120, 20)), right=False, labels=age_labels) # create categorical features for age | |
labels =['{0}-{1}'.format(i, i+30) for i in range(0, round(67.1),30)] | |
data['BMI_range'] = pd.cut(data['Body Mass Index'], bins=(range(0, 120, 30)), right=False, labels=labels) # create categorical features for bodey mass index | |
bp_labels =['{0}-{1}'.format(i, i+50) for i in range(0, round(122),50)] | |
data['BP_range'] = pd.cut(data['Blood Pressure'], bins=(range(0, 200, 50)), right=False, labels=bp_labels) # create categorical features for blood pressure | |
labels =['{0}-{1}'.format(i, i+7) for i in range(0, round(17),7)] | |
data['PG_range'] = pd.cut(data['Plasma Glucose'], bins=(range(0, 28, 7)), right=False, labels=labels) # create categorical features for plasma glucose | |
data.drop(columns=['Blood Pressure', 'Age', 'Body Mass Index','Plasma Glucose', 'All-Product', 'Blood Work Result-3', 'Blood Work Result-2'], inplace=True) # drop unused columns | |
def combine_cats_nums(transformed_data, full_pipeline): | |
cat_features = full_pipeline.named_transformers_['categorical']['cat_encoder'].get_feature_names() # get the feature from the categorical transformer | |
num_features = ['Blood Work Result-1', 'Blood Work Result-4'] | |
columns_ = np.concatenate([num_features, cat_features]) # concatenate numerical and categorical features | |
prepared_data = pd.DataFrame(transformed_data, columns=columns_) # create a dataframe from the transformed data | |
prepared_data = prepared_data.rename(columns={'x0_0':'Insurance_0', 'x0_1': 'Insurance_1'}) # rename columns | |
def make_prediction(data, transformer, model): | |
new_columns = return_columns() | |
dict_new_old_cols = dict(zip(data.columns, new_columns)) | |
data = data.rename(columns=dict_new_old_cols) | |
feature_engineering(data) # create new features | |
transformed_data = transformer.transform(data) # transform the data using the transformer | |
combine_cats_nums(transformed_data, transformer)# create a dataframe from the transformed data | |
# make prediction | |
label = model.predict(transformed_data) # make a prediction | |
probs = model.predict_proba(transformed_data) | |
return label, probs.max() | |
# function to create a new column 'Bmi' | |
def process_label(row): | |
if row['Predicted Label'] == 1: | |
return 'Sepsis status is Positive' | |
elif row['Predicted Label'] == 0: | |
return 'Sepsis status is Negative' | |
def return_columns(): | |
# create new columns | |
new_columns = ['Plasma Glucose','Blood Work Result-1', 'Blood Pressure', | |
'Blood Work Result-2', 'Blood Work Result-3', 'Body Mass Index', | |
'Blood Work Result-4', 'Age', 'Insurance'] | |
return new_columns | |
def process_json_csv(contents, file_type, valid_formats): | |
# Read the file contents as a byte string | |
contents = contents.decode() # Decode the byte string to a regular string | |
new_columns = return_columns() # return new_columns | |
if file_type == valid_formats[0]: | |
data = pd.read_csv(StringIO(contents)) | |
# Process the uploaded file | |
elif file_type == valid_formats[1]: | |
data = pd.read_json(contents) | |
data = data.drop(columns=['ID']) | |
dict_new_old_cols = dict(zip(data.columns, new_columns)) # get dict of new and old cols | |
data = data.rename(columns=dict_new_old_cols) | |
return data | |
def output_batch(data1, data2): | |
# data_dict = data_copy.to_dict('index') # Convert the data to a dictionary | |
results_list = [] | |
# for index in range(len(data1)): | |
# row1 = data1.iloc(index).to_dict() | |
# row2 = data2.iloc(index).to_dict() | |
# results_list.append({'input': row1, 'output': row2}) | |
for row1, row2 in zip(data1.itertuples(index=False), data2.itertuples(index=False)): | |
dictionary_from_dataframe1 = row1._asdict() | |
dictionary_from_dataframe2 = row2._asdict() | |
results_list.append({'input': dictionary_from_dataframe1, 'output': dictionary_from_dataframe2}) | |
final_dict = {'results': results_list} | |
return final_dict |