Spaces:
Sleeping
Sleeping
File size: 5,276 Bytes
1b5b1a6 b4eec0c 1b5b1a6 b4eec0c 1b5b1a6 b4eec0c 1b5b1a6 b4eec0c 1b5b1a6 b4eec0c 1b5b1a6 b4eec0c 1b5b1a6 b4eec0c 1b5b1a6 b4eec0c 1b5b1a6 b4eec0c 1b5b1a6 b4eec0c 1b5b1a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import pandas as pd
import numpy as np
import pickle
from io import StringIO
from functools import lru_cache
@lru_cache(maxsize=100, )
def load_pickle(filename):
with open(filename, 'rb') as file: # read file
contents = pickle.load(file) # load contents of file
return contents
def feature_engineering(data):
data['Insurance'] = data['Insurance'].astype(int).astype(str) # run function to create new features
# create features
data['All-Product'] = data['Blood Work Result-4'] * data['Blood Work Result-1']* data['Blood Work Result-2']* data['Blood Work Result-3'] * data['Plasma Glucose']* data['Blood Pressure'] * data['Age']* data['Body Mass Index'] # Multiply all numerical features
all_labels =['{0}-{1}'.format(i, i+500000000000) for i in range(0, round(2714705253292.0312),500000000000)]
data['All-Product_range'] = pd.cut(data['All-Product'], bins=(range(0, 3500000000000, 500000000000)), right=False, labels=all_labels)
age_labels =['{0}-{1}'.format(i, i+20) for i in range(0, 83,20)]
data['Age Group'] = pd.cut(data['Age'], bins=(range(0, 120, 20)), right=False, labels=age_labels) # create categorical features for age
labels =['{0}-{1}'.format(i, i+30) for i in range(0, round(67.1),30)]
data['BMI_range'] = pd.cut(data['Body Mass Index'], bins=(range(0, 120, 30)), right=False, labels=labels) # create categorical features for bodey mass index
bp_labels =['{0}-{1}'.format(i, i+50) for i in range(0, round(122),50)]
data['BP_range'] = pd.cut(data['Blood Pressure'], bins=(range(0, 200, 50)), right=False, labels=bp_labels) # create categorical features for blood pressure
labels =['{0}-{1}'.format(i, i+7) for i in range(0, round(17),7)]
data['PG_range'] = pd.cut(data['Plasma Glucose'], bins=(range(0, 28, 7)), right=False, labels=labels) # create categorical features for plasma glucose
data.drop(columns=['Blood Pressure', 'Age', 'Body Mass Index','Plasma Glucose', 'All-Product', 'Blood Work Result-3', 'Blood Work Result-2'], inplace=True) # drop unused columns
def combine_cats_nums(transformed_data, full_pipeline):
cat_features = full_pipeline.named_transformers_['categorical']['cat_encoder'].get_feature_names() # get the feature from the categorical transformer
num_features = ['Blood Work Result-1', 'Blood Work Result-4']
columns_ = np.concatenate([num_features, cat_features]) # concatenate numerical and categorical features
prepared_data = pd.DataFrame(transformed_data, columns=columns_) # create a dataframe from the transformed data
prepared_data = prepared_data.rename(columns={'x0_0':'Insurance_0', 'x0_1': 'Insurance_1'}) # rename columns
def make_prediction(data, transformer, model):
new_columns = return_columns()
dict_new_old_cols = dict(zip(data.columns, new_columns)) # create a dict of original columns and new columns
data = data.rename(columns=dict_new_old_cols)
feature_engineering(data) # create new features
transformed_data = transformer.transform(data) # transform the data using the transformer
combine_cats_nums(transformed_data, transformer)# create a dataframe from the transformed data
# make prediction
label = model.predict(transformed_data) # make a prediction
probs = model.predict_proba(transformed_data) # predit sepsis status for inputs
return label, probs.max()
# function to create a new column 'Bmi'
def process_label(row):
if row['Predicted Label'] == 1:
return 'Sepsis status is Positive'
elif row['Predicted Label'] == 0:
return 'Sepsis status is Negative'
def return_columns():
# create new columns
new_columns = ['Plasma Glucose','Blood Work Result-1', 'Blood Pressure',
'Blood Work Result-2', 'Blood Work Result-3', 'Body Mass Index',
'Blood Work Result-4', 'Age', 'Insurance']
return new_columns
def process_json_csv(contents, file_type, valid_formats):
# Read the file contents as a byte string
contents = contents.decode() # Decode the byte string to a regular string
new_columns = return_columns() # return new_columns
# Process the uploaded file
if file_type == valid_formats[0]:
data = pd.read_csv(StringIO(contents)) # read csv files
elif file_type == valid_formats[1]:
data = pd.read_json(contents) # read json file
data = data.drop(columns=['ID']) # drop ID column
dict_new_old_cols = dict(zip(data.columns, new_columns)) # get dict of new and old cols
data = data.rename(columns=dict_new_old_cols) # rename colums to appropriate columns
return data
def output_batch(data1, labels):
data_labels = pd.DataFrame(labels, columns=['Predicted Label']) # convert label into a dataframe
data_labels['Predicted Label'] = data_labels.apply(process_label, axis=1) # change label to understanding strings
results_list = [] # create an empty lits
x = data1.to_dict('index') # convert datafram into dictionary
y = data_labels.to_dict('index') # convert datafram into dictionary
for i in range(len(y)):
results_list.append({i:{'inputs': x[i], 'output':y[i]}}) # append input and labels
final_dict = {'results': results_list}
return final_dict |