import gradio as gr import os hf_token = os.environ.get("HF_TOKEN") import spaces from diffusers import DiffusionPipeline from huggingface_hub import snapshot_download import torch import os, sys import time class Dummy(): pass pipeline_path = snapshot_download(repo_id='briaai/BRIA-2.4') sys.path.append(pipeline_path) from ella_xl_pipeline import EllaXLPipeline resolutions = ["1024 1024","1280 768","1344 768","768 1344","768 1280"] # Ng default_negative_prompt= "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers" # Load pipeline pipe = DiffusionPipeline.from_pretrained("briaai/BRIA-2.3", torch_dtype=torch.float16, use_safetensors=True) pipe.load_lora_weights(f'{pipeline_path}/pytorch_lora_weights.safetensors') pipe.fuse_lora() pipe.unload_lora_weights() pipe.to("cuda") pipe = EllaXLPipeline(pipe,f'{pipeline_path}/pytorch_model.bin') pipe.force_zeros_for_empty_prompt = False # print("Optimizing BRIA-2.3 - this could take a while") # t=time.time() # pipe.unet = torch.compile( # pipe.unet, mode="reduce-overhead", fullgraph=True # 600 secs compilation # ) # with torch.no_grad(): # outputs = pipe( # prompt="an apple", # num_inference_steps=30, # ) # # This will avoid future compilations on different shapes # unet_compiled = torch._dynamo.run(pipe.unet) # unet_compiled.config=pipe.unet.config # unet_compiled.add_embedding = Dummy() # unet_compiled.add_embedding.linear_1 = Dummy() # unet_compiled.add_embedding.linear_1.in_features = pipe.unet.add_embedding.linear_1.in_features # pipe.unet = unet_compiled # print(f"Optimizing finished successfully after {time.time()-t} secs") @spaces.GPU(enable_queue=True) def infer(prompt,negative_prompt,seed,resolution): print(f""" —/n {prompt} """) # generator = torch.Generator("cuda").manual_seed(555) t=time.time() if seed=="-1": generator=None else: try: seed=int(seed) generator = torch.Generator("cuda").manual_seed(seed) except: generator=None w,h = resolution.split() w,h = int(w),int(h) image = pipe(prompt,num_inference_steps=30, negative_prompt=negative_prompt,generator=generator,width=w,height=h).images[0] print(f'gen time is {time.time()-t} secs') # Future # Add amound of steps # if nsfw: # raise gr.Error("Generated image is NSFW") return image css = """ #col-container{ margin: 0 auto; max-width: 580px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("## BRIA 2.3") gr.HTML('''

This is a demo for BRIA 2.3 text-to-image . BRIA 2.3 improve the generation of humans and illustrations compared to BRIA 2.2 while still trained on licensed data, and so provide full legal liability coverage for copyright and privacy infringement.

''') with gr.Group(): with gr.Column(): prompt_in = gr.Textbox(label="Prompt", value="A smiling man with wavy brown hair and a trimmed beard") resolution = gr.Dropdown(value=resolutions[0], show_label=True, label="Resolution", choices=resolutions) seed = gr.Textbox(label="Seed", value=-1) negative_prompt = gr.Textbox(label="Negative Prompt", value=default_negative_prompt) submit_btn = gr.Button("Generate") result = gr.Image(label="BRIA-2.3 Result") # gr.Examples( # examples = [ # "Dragon, digital art, by Greg Rutkowski", # "Armored knight holding sword", # "A flat roof villa near a river with black walls and huge windows", # "A calm and peaceful office", # "Pirate guinea pig" # ], # fn = infer, # inputs = [ # prompt_in # ], # outputs = [ # result # ] # ) submit_btn.click( fn = infer, inputs = [ prompt_in, negative_prompt, seed, resolution ], outputs = [ result ] ) demo.queue().launch(show_api=False)