Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import os | |
hf_token = os.environ.get("HF_TOKEN") | |
import spaces | |
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler, AutoencoderKL | |
import torch | |
import time | |
class Dummy(): | |
pass | |
resolutions = ["1024 1024","1280 768","1344 768","768 1344","768 1280" ] | |
# Load pipeline | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
pipe = DiffusionPipeline.from_pretrained("briaai/BRIA-2.3", torch_dtype=torch.float16, vae=vae) | |
pipe.load_lora_weights("briaai/BRIA-2.3-FAST-LORA") | |
pipe.fuse_lora() | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
pipe.to('cuda') | |
del vae | |
pipe.force_zeros_for_empty_prompt = False | |
# print("Optimizing BRIA 2.3 FAST LORA - this could take a while") | |
# t=time.time() | |
# pipe.unet = torch.compile( | |
# pipe.unet, mode="reduce-overhead", fullgraph=True # 600 secs compilation | |
# ) | |
# with torch.no_grad(): | |
# outputs = pipe( | |
# prompt="an apple", | |
# num_inference_steps=8, | |
# ) | |
# # This will avoid future compilations on different shapes | |
# unet_compiled = torch._dynamo.run(pipe.unet) | |
# unet_compiled.config=pipe.unet.config | |
# unet_compiled.add_embedding = Dummy() | |
# unet_compiled.add_embedding.linear_1 = Dummy() | |
# unet_compiled.add_embedding.linear_1.in_features = pipe.unet.add_embedding.linear_1.in_features | |
# pipe.unet = unet_compiled | |
# print(f"Optimizing finished successfully after {time.time()-t} secs") | |
def infer(prompt,seed,resolution): | |
print(f""" | |
β/n | |
{prompt} | |
""") | |
# generator = torch.Generator("cuda").manual_seed(555) | |
t=time.time() | |
if seed=="-1": | |
generator=None | |
else: | |
try: | |
seed=int(seed) | |
generator = torch.Generator("cuda").manual_seed(seed) | |
except: | |
generator=None | |
w,h = resolution.split() | |
w,h = int(w),int(h) | |
image = pipe(prompt,num_inference_steps=8,generator=generator,width=w,height=h,guidance_scale=0).images[0] | |
print(f'gen time is {time.time()-t} secs') | |
# Future | |
# Add amound of steps | |
# if nsfw: | |
# raise gr.Error("Generated image is NSFW") | |
return image | |
css = """ | |
#col-container{ | |
margin: 0 auto; | |
max-width: 580px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("## BRIA 2.3 FAST LORA") | |
gr.HTML(''' | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
This is a demo for | |
<a href="https://huggingface.co./briaai/BRIA-2.3-FAST-LORA" target="_blank">BRIA 2.3 FAST LORA </a>. | |
This is a fast version of BRIA 2.3 text-to-image model, still trained on licensed data, and so provides full legal liability coverage for copyright and privacy infringement. | |
You can also try it for free in our <a href="https://labs.bria.ai/" target="_blank">webapp demo </a>. | |
Are you a startup or a student? We encourage you to apply for our | |
<a href="https://pages.bria.ai/the-visual-generative-ai-platform-for-builders-startups-plan?_gl=1*cqrl81*_ga*MTIxMDI2NzI5OC4xNjk5NTQ3MDAz*_ga_WRN60H46X4*MTcwOTM5OTMzNC4yNzguMC4xNzA5Mzk5MzM0LjYwLjAuMA..) target="_blank">Startup Plan </a> | |
This program are designed to support emerging businesses and academic pursuits with our cutting-edge technology. | |
</p> | |
''') | |
with gr.Group(): | |
with gr.Column(): | |
prompt_in = gr.Textbox(label="Prompt", value="A smiling man with wavy brown hair and a trimmed beard") | |
resolution = gr.Dropdown(value=resolutions[0], show_label=True, label="Resolution", choices=resolutions) | |
seed = gr.Textbox(label="Seed", value=-1) | |
submit_btn = gr.Button("Generate") | |
result = gr.Image(label="BRIA 2.3 FAST LORA Result") | |
# gr.Examples( | |
# examples = [ | |
# "Dragon, digital art, by Greg Rutkowski", | |
# "Armored knight holding sword", | |
# "A flat roof villa near a river with black walls and huge windows", | |
# "A calm and peaceful office", | |
# "Pirate guinea pig" | |
# ], | |
# fn = infer, | |
# inputs = [ | |
# prompt_in | |
# ], | |
# outputs = [ | |
# result | |
# ] | |
# ) | |
submit_btn.click( | |
fn = infer, | |
inputs = [ | |
prompt_in, | |
seed, | |
resolution | |
], | |
outputs = [ | |
result | |
] | |
) | |
demo.queue().launch(show_api=False) |