Eyalgut's picture
Create app.py
b611dce
raw
history blame
4.65 kB
import gradio as gr
import os
hf_token = os.environ.get("HF_TOKEN")
import spaces
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler, AutoencoderKL
import torch
import time
class Dummy():
pass
resolutions = ["1024 1024","1280 768","1344 768","768 1344","768 1280" ]
# Load pipeline
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained("briaai/BRIA-2.3", torch_dtype=torch.float16, vae=vae)
pipe.load_lora_weights("briaai/BRIA-2.3-FAST-LORA")
pipe.fuse_lora()
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.to('cuda')
del vae
pipe.force_zeros_for_empty_prompt = False
# print("Optimizing BRIA 2.3 FAST LORA - this could take a while")
# t=time.time()
# pipe.unet = torch.compile(
# pipe.unet, mode="reduce-overhead", fullgraph=True # 600 secs compilation
# )
# with torch.no_grad():
# outputs = pipe(
# prompt="an apple",
# num_inference_steps=8,
# )
# # This will avoid future compilations on different shapes
# unet_compiled = torch._dynamo.run(pipe.unet)
# unet_compiled.config=pipe.unet.config
# unet_compiled.add_embedding = Dummy()
# unet_compiled.add_embedding.linear_1 = Dummy()
# unet_compiled.add_embedding.linear_1.in_features = pipe.unet.add_embedding.linear_1.in_features
# pipe.unet = unet_compiled
# print(f"Optimizing finished successfully after {time.time()-t} secs")
@spaces.GPU(enable_queue=True)
def infer(prompt,seed,resolution):
print(f"""
β€”/n
{prompt}
""")
# generator = torch.Generator("cuda").manual_seed(555)
t=time.time()
if seed=="-1":
generator=None
else:
try:
seed=int(seed)
generator = torch.Generator("cuda").manual_seed(seed)
except:
generator=None
w,h = resolution.split()
w,h = int(w),int(h)
image = pipe(prompt,num_inference_steps=8,generator=generator,width=w,height=h,guidance_scale=0).images[0]
print(f'gen time is {time.time()-t} secs')
# Future
# Add amound of steps
# if nsfw:
# raise gr.Error("Generated image is NSFW")
return image
css = """
#col-container{
margin: 0 auto;
max-width: 580px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("## BRIA 2.3 FAST LORA")
gr.HTML('''
<p style="margin-bottom: 10px; font-size: 94%">
This is a demo for
<a href="https://huggingface.co./briaai/BRIA-2.3-FAST-LORA" target="_blank">BRIA 2.3 FAST LORA </a>.
This is a fast version of BRIA 2.3 text-to-image model, still trained on licensed data, and so provides full legal liability coverage for copyright and privacy infringement.
You can also try it for free in our <a href="https://labs.bria.ai/" target="_blank">webapp demo </a>.
Are you a startup or a student? We encourage you to apply for our
<a href="https://pages.bria.ai/the-visual-generative-ai-platform-for-builders-startups-plan?_gl=1*cqrl81*_ga*MTIxMDI2NzI5OC4xNjk5NTQ3MDAz*_ga_WRN60H46X4*MTcwOTM5OTMzNC4yNzguMC4xNzA5Mzk5MzM0LjYwLjAuMA..) target="_blank">Startup Plan </a>
This program are designed to support emerging businesses and academic pursuits with our cutting-edge technology.
</p>
''')
with gr.Group():
with gr.Column():
prompt_in = gr.Textbox(label="Prompt", value="A smiling man with wavy brown hair and a trimmed beard")
resolution = gr.Dropdown(value=resolutions[0], show_label=True, label="Resolution", choices=resolutions)
seed = gr.Textbox(label="Seed", value=-1)
submit_btn = gr.Button("Generate")
result = gr.Image(label="BRIA 2.3 FAST LORA Result")
# gr.Examples(
# examples = [
# "Dragon, digital art, by Greg Rutkowski",
# "Armored knight holding sword",
# "A flat roof villa near a river with black walls and huge windows",
# "A calm and peaceful office",
# "Pirate guinea pig"
# ],
# fn = infer,
# inputs = [
# prompt_in
# ],
# outputs = [
# result
# ]
# )
submit_btn.click(
fn = infer,
inputs = [
prompt_in,
seed,
resolution
],
outputs = [
result
]
)
demo.queue().launch(show_api=False)