brendenc commited on
Commit
ce35fcd
·
1 Parent(s): 19b15ed

Updated from colab

Browse files
Files changed (2) hide show
  1. app.py +29 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sklearn.metrics.pairwise import cosine_similarity
2
+ from sentence_transformers import SentenceTransformer
3
+ import datasets
4
+ import gradio as gr
5
+
6
+ model = SentenceTransformer('clip-ViT-B-16')
7
+ dataset = datasets.load_dataset('brendenc/celeb-identities')
8
+
9
+ def predict(im1, im2):
10
+
11
+ embeddings = model.encode([im1, im2])
12
+ sim = cosine_similarity(embeddings)
13
+ sim = sim[0, 1]
14
+ if sim > 0.75:
15
+ return sim, "SAME PERSON, UNLOCK PHONE"
16
+ else:
17
+ return sim, "DIFFERENT PEOPLE, DON'T UNLOCK"
18
+
19
+
20
+ interface = gr.Interface(fn=predict,
21
+ inputs= [gr.Image(value = dataset['train']['image'][0], type="pil", source="webcam"),
22
+ gr.Image(value = dataset['train']['image'][1], type="pil", source="webcam")],
23
+ outputs= [gr.Number(label="Similarity"),
24
+ gr.Textbox(label="Message")],
25
+ title = 'Face ID',
26
+ description = 'This app uses emage embeddings and cosine similarity to function as a Face ID application. Cosine similarity is used, so it ranges from -1 to 1.'
27
+ )
28
+
29
+ interface.launch(debug=True)
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ scikit-learn
2
+ datasets
3
+ sentence_transformers