# coding: utf-8 # Copyright (C) 2023, [Breezedeus](https://github.com/breezedeus). # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # Ref: https://huggingface.co./spaces/hysts/Manga-OCR/blob/main/app.py import os import json import functools import gradio as gr import cv2 import numpy as np from cnstd.utils import pil_to_numpy, imsave from cnocr import CnOcr, DET_AVAILABLE_MODELS, REC_AVAILABLE_MODELS from cnocr.utils import set_logger, draw_ocr_results, download logger = set_logger() MODELS = {} def plot_for_debugging(rotated_img, one_out, box_score_thresh, crop_ncols, prefix_fp): import matplotlib.pyplot as plt import math rotated_img = rotated_img.copy() crops = [info['cropped_img'] for info in one_out] print('%d boxes are found' % len(crops)) if len(crops) < 1: return ncols = crop_ncols nrows = math.ceil(len(crops) / ncols) fig, ax = plt.subplots(nrows=nrows, ncols=ncols) for i, axi in enumerate(ax.flat): if i >= len(crops): break axi.imshow(crops[i]) crop_fp = '%s-crops.png' % prefix_fp plt.savefig(crop_fp) print('cropped results are save to file %s' % crop_fp) for info in one_out: box, score = info.get('position'), info['score'] if score < box_score_thresh: # score < 0.5 continue if box is not None: box = box.astype(int).reshape(-1, 2) cv2.polylines(rotated_img, [box], True, color=(255, 0, 0), thickness=2) result_fp = '%s-result.png' % prefix_fp imsave(rotated_img, result_fp, normalized=False) print('boxes results are save to file %s' % result_fp) def get_ocr_model(det_model_name, rec_model_name, det_more_configs): global MODELS config_str = json.dumps(det_more_configs) if (det_model_name, rec_model_name, config_str) in MODELS: return MODELS[(det_model_name, rec_model_name, config_str)] det_model_name, det_model_backend = det_model_name.split('::') # rec_model_name, rec_model_backend = rec_model_name.split('::') rec_model_backend = 'onnx' model = CnOcr( det_model_name=det_model_name, det_model_backend=det_model_backend, rec_model_name=rec_model_name, rec_model_backend=rec_model_backend, det_more_configs=det_more_configs, ) if len(MODELS) > 50: MODELS = {} MODELS[(det_model_name, rec_model_name, config_str)] = model return model def visualize_naive_result(img, det_model_name, std_out, box_score_thresh): if len(std_out) < 1: # gr.Warning(f'未检测到文本!') return [] img = pil_to_numpy(img).transpose((1, 2, 0)).astype(np.uint8) # plot_for_debugging(img, std_out, box_score_thresh, 2, './streamlit-app') # gr.Markdown('## Detection Result') # if det_model_name == 'naive_det': # gr.Warning('⚠️ Warning: "naive_det" 检测模型不返回文本框位置!') # cols = st.columns([1, 7, 1]) # cols[1].image('./streamlit-app-result.png') # # st.subheader('Recognition Result') # cols = st.columns([1, 7, 1]) # cols[1].image('./streamlit-app-crops.png') return _visualize_ocr(std_out) def _visualize_ocr(ocr_outs): if len(ocr_outs) < 1: return ocr_res = [] for out in ocr_outs: # cropped_img = out['cropped_img'] # 检测出的文本框 ocr_res.append([out['score'], out['text']]) return ocr_res def visualize_result(img, ocr_outs): out_draw_fp = './streamlit-app-det-result.png' font_path = 'docs/fonts/simfang.ttf' if not os.path.exists(font_path): url = 'https://huggingface.co./datasets/breezedeus/cnocr-wx-qr-code/resolve/main/fonts/simfang.ttf' os.makedirs(os.path.dirname(font_path), exist_ok=True) download(url, path=font_path, overwrite=True) draw_ocr_results(img, ocr_outs, out_draw_fp, font_path) return out_draw_fp def recognize( det_model_name, is_single_line, rec_model_name, rotated_bbox, use_angle_clf, new_size, box_score_thresh, min_box_size, image_file, ): img = image_file.convert('RGB') det_more_configs = dict(rotated_bbox=rotated_bbox, use_angle_clf=use_angle_clf) ocr = get_ocr_model(det_model_name, rec_model_name, det_more_configs) if is_single_line: ocr_out = [ocr.ocr_for_single_line(np.array(img))] else: ocr_out = ocr.ocr( img, return_cropped_image=True, resized_shape=new_size, preserve_aspect_ratio=True, box_score_thresh=box_score_thresh, min_box_size=min_box_size, ) det_model_name, det_model_backend = det_model_name.split('::') if is_single_line or det_model_name == 'naive_det': out_texts = visualize_naive_result( img, det_model_name, ocr_out, box_score_thresh ) if is_single_line: return [ gr.update(visible=False), gr.update(visible=False), gr.update(value=out_texts, visible=True), ] return [ gr.update(visible=False), gr.update(visible=True), gr.update(value=out_texts, visible=True), ] else: out_img_path = visualize_result(img, ocr_out) return [ gr.update(value=out_img_path, visible=True), gr.update(visible=False), gr.update(visible=False), ] def main(): det_models = list(DET_AVAILABLE_MODELS.all_models()) det_models.append(('naive_det', 'onnx')) det_models.sort() det_models = [f'{m}::{b}' for m, b in det_models] all_models = list(REC_AVAILABLE_MODELS.all_models()) all_models = [f'{m}' for m, b in all_models if b == 'onnx'] cnocr_models = [name for name in all_models if 'densenet' in name] cnocr_models.sort() other_models = [name for name in all_models if 'densenet' not in name] other_models.sort() all_models = cnocr_models + other_models title = 'Python 开源中英 OCR 工具:' desc = ( '

详细说明参见:Github;' '在线文档;' '欢迎加入 交流群;' '作者:Breezedeus ,' 'Github

' ) example_func = functools.partial( recognize, # det_model_name='ch_PP-OCRv3_det::onnx', rotated_bbox=True, # use_angle_clf=False, new_size=768, box_score_thresh=0.3, min_box_size=10, ) examples = [ [ 'ch_PP-OCRv3_det::onnx', True, 'number-densenet_lite_136-fc', False, 'docs/examples/card1-s.jpg', ], [ 'ch_PP-OCRv3_det::onnx', True, 'number-densenet_lite_136-fc', False, 'docs/examples/card2-s.jpg', ], [ 'ch_PP-OCRv3_det::onnx', True, 'number-densenet_lite_136-fc', False, 'docs/examples/cy1-s.jpg', ], [ 'ch_PP-OCRv3_det::onnx', False, 'densenet_lite_136-gru', False, 'docs/examples/huochepiao.jpeg', ], [ 'ch_PP-OCRv3_det::onnx', False, 'densenet_lite_136-gru', False, 'docs/examples/1_res.jpg', ], [ 'db_shufflenet_v2::pytorch', False, 'en_number_mobile_v2.0', False, 'docs/examples/en_book1.jpeg', ], [ 'db_shufflenet_v2::pytorch', False, 'densenet_lite_136-gru', True, 'docs/examples/beauty0.jpg', ], ] table_desc = """
[![Visitors](https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fbreezedeus%2FCnOCR-Demo&labelColor=%23697689&countColor=%23f5c791&style=flat&labelStyle=upper)](https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fbreezedeus%2FCnOCR-Demo) | | | | ------------------------------- | --------------------------------------- | | 📀 **Code** | [Github](https://github.com/breezedeus/cnocr) | | 📖 **Doc** | [在线文档](https://cnocr.readthedocs.io) | | 🧳 **Models** | [可用模型](https://cnocr.readthedocs.io/zh/latest/models/) | | 💬 **Contact** | [交流群](https://www.breezedeus.com/join-group) | | 👨🏻‍💻 **Author** | [Breezedeus](https://www.breezedeus.com) | 有用还请帮忙 **star 🌟 [CnOCR](https://github.com/breezedeus/cnocr)** 🙏
""" with gr.Blocks() as demo: gr.HTML( f'

{title} CnOCR V2.3

' ) with gr.Row(equal_height=False): with gr.Column(min_width=200, variant='panel', scale=3): gr.Markdown('### 模型设置') det_model_name = gr.Dropdown( label='选择检测模型', choices=det_models, value='ch_PP-OCRv3_det::onnx', ) is_single_line = gr.Checkbox(label='单行文字模式(不使用检测模型)', value=False) rec_model_name = gr.Dropdown( label='选择识别模型', choices=all_models, value='densenet_lite_136-gru', ) gr.Markdown('### 检测参数') rotated_bbox = gr.Checkbox(label='检测带角度文本框', value=True) use_angle_clf = gr.Checkbox(label='使用角度预测模型校正文本框', value=False) with gr.Accordion('更多选项', open=False): new_size = gr.Slider( label='resize 后图片(长边)大小', minimum=124, maximum=4096, value=768 ) box_score_thresh = gr.Slider( label='得分阈值(低于阈值的结果会被过滤掉)', minimum=0.05, maximum=0.95, value=0.3 ) min_box_size = gr.Slider( label='框大小阈值(更小的文本框会被过滤掉)', minimum=4, maximum=50, value=10 ) with gr.Column(scale=5, variant='compact'): gr.Markdown('### 选择待识别图片') image_file = gr.Image(label='待识别图片', type="pil", image_mode='RGB') sub_btn = gr.Button("Submit", variant="primary") with gr.Column(scale=2, variant='compact'): gr.Markdown(table_desc) out_image = gr.Image(label='识别结果', interactive=False, visible=False) naive_warn = gr.Markdown( '**⚠️ Warning**: "naive_det" 检测模型不返回文本框位置!', visible=False ) out_texts = gr.Dataframe( headers=['得分', '文本'], label='识别结果', interactive=False, visible=False ) sub_btn.click( recognize, inputs=[ det_model_name, is_single_line, rec_model_name, rotated_bbox, use_angle_clf, new_size, box_score_thresh, min_box_size, image_file, ], outputs=[out_image, naive_warn, out_texts], ) gr.Examples( label='示例', examples=examples, inputs=[ det_model_name, is_single_line, rec_model_name, use_angle_clf, image_file, ], outputs=[out_image, naive_warn, out_texts], fn=example_func, cache_examples=os.getenv('CACHE_EXAMPLES') == '1', ) demo.queue(max_size=10) demo.launch() if __name__ == '__main__': main()