galactica-base / app.py
breadlicker45's picture
Update app.py
a1a6da1
import gradio as gr
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("facebook/galactica-125m")
model = AutoModelForCausalLM.from_pretrained("facebook/galactica-125m")
text2text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer, num_workers=2)
def predict(text, max_length=64, temperature=0.7, do_sample=True):
text = text.strip()
out_text = text2text_generator(text, max_length=max_length,
temperature=temperature,
do_sample=do_sample,
eos_token_id = tokenizer.eos_token_id,
bos_token_id = tokenizer.bos_token_id,
pad_token_id = tokenizer.pad_token_id,
)[0]['generated_text']
out_text = "<p>" + out_text + "</p>"
out_text = out_text.replace(text, text + "<b><span style='background-color: #ffffcc;'>")
out_text = out_text + "</span></b>"
out_text = out_text.replace("\n", "<br>")
return out_text
iface = gr.Interface(
fn=predict,
inputs=[
gr.inputs.Textbox(lines=5, label="Input Text"),
gr.inputs.Slider(minimum=32, maximum=256, default=64, label="Max Length"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.7, step=0.1, label="Temperature"),
gr.inputs.Checkbox(label="Do Sample"),
],
outputs=gr.HTML(),
description="Galactica Base Model",
examples=[[
"The attention mechanism in LLM is",
128,
0.7,
True
],
[
"Title: Attention is all you need\n\nAbstract:",
128,
0.7,
True
]
]
)
iface.launch()