Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
tokenizer = AutoTokenizer.from_pretrained("facebook/galactica-125m") | |
model = AutoModelForCausalLM.from_pretrained("facebook/galactica-125m") | |
text2text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer, num_workers=2) | |
def predict(text, max_length=64, temperature=0.7, do_sample=True): | |
text = text.strip() | |
out_text = text2text_generator(text, max_length=max_length, | |
temperature=temperature, | |
do_sample=do_sample, | |
eos_token_id = tokenizer.eos_token_id, | |
bos_token_id = tokenizer.bos_token_id, | |
pad_token_id = tokenizer.pad_token_id, | |
)[0]['generated_text'] | |
out_text = "<p>" + out_text + "</p>" | |
out_text = out_text.replace(text, text + "<b><span style='background-color: #ffffcc;'>") | |
out_text = out_text + "</span></b>" | |
out_text = out_text.replace("\n", "<br>") | |
return out_text | |
iface = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.inputs.Textbox(lines=5, label="Input Text"), | |
gr.inputs.Slider(minimum=32, maximum=256, default=64, label="Max Length"), | |
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.7, step=0.1, label="Temperature"), | |
gr.inputs.Checkbox(label="Do Sample"), | |
], | |
outputs=gr.HTML(), | |
description="Galactica Base Model", | |
examples=[[ | |
"The attention mechanism in LLM is", | |
128, | |
0.7, | |
True | |
], | |
[ | |
"Title: Attention is all you need\n\nAbstract:", | |
128, | |
0.7, | |
True | |
] | |
] | |
) | |
iface.launch() |