Spaces:
Build error
Build error
# ################################ | |
# Model: wav2vec2 + DNN + CTC | |
# Augmentation: SpecAugment | |
# Authors: Titouan Parcollet 2021 | |
# ################################ | |
# Seed needs to be set at top of yaml, before objects with parameters are made | |
seed: 1234 | |
__set_seed: !!python/object/apply:torch.manual_seed [!ref <seed>] | |
output_folder: !ref semi_wavlm_large_tunisian_ctc/<seed> | |
wer_file: !ref <output_folder>/wer.txt | |
save_folder: !ref <output_folder>/save | |
train_log: !ref <output_folder>/train_log.txt | |
# URL for the biggest LeBenchmark wav2vec french. | |
wav2vec2_folder: !ref <save_folder>/wav2vec2_checkpoint | |
# Data files | |
data_folder: /path/to/data # e.g, /localscratch/cv-corpus-5.1-2020-06-22/fr | |
train_tsv_file: !ref <data_folder>/train.tsv # Standard CommonVoice .tsv files | |
dev_tsv_file: !ref <data_folder>/dev.tsv # Standard CommonVoice .tsv files | |
test_tsv_file: !ref <data_folder>/test.tsv # Standard CommonVoice .tsv files | |
accented_letters: True | |
language: fr # use 'it' for Italian, 'rw' for Kinyarwanda, 'en' for english | |
train_csv: Data/train_wavs/train.csv | |
valid_csv: Data/dev_wavs/dev.csv | |
test_csv: | |
- Data/test_wavs/test.csv | |
skip_prep: True # Skip data preparation | |
use_language_modelling: True | |
ngram_lm_path: outdomain.arpa | |
# We remove utterance slonger than 10s in the train/dev/test sets as | |
# longer sentences certainly correspond to "open microphones". | |
avoid_if_longer_than: 10.0 | |
avoid_if_shorter_than: 1.2 | |
# Training parameters | |
number_of_epochs: 12 | |
lr: 1.0 | |
lr_wav2vec: 0.0001 | |
sorting: ascending | |
auto_mix_prec: False | |
sample_rate: 16000 | |
ckpt_interval_minutes: 30 # save checkpoint every N min | |
# With data_parallel batch_size is split into N jobs | |
# With DDP batch_size is multiplied by N jobs | |
# Must be 6 per GPU to fit 16GB of VRAM | |
batch_size: 10 | |
test_batch_size: 4 | |
dataloader_options: | |
batch_size: !ref <batch_size> | |
num_workers: 6 | |
test_dataloader_options: | |
batch_size: !ref <test_batch_size> | |
num_workers: 6 | |
# BPE parameters | |
token_type: char # ["unigram", "bpe", "char"] | |
character_coverage: 1.0 | |
# Model parameters | |
# activation: !name:torch.nn.LeakyReLU | |
wav2vec_output_dim: 1024 | |
dnn_neurons: 1024 | |
freeze_wav2vec: False | |
freeze_feature_extractor: True | |
dropout: 0.15 | |
warmup_steps: 500 # The wav2vec 2 model isn't updated for this amount of steps | |
# Outputs | |
output_neurons: 40 # BPE size, index(blank/eos/bos) = 0 | |
# Decoding parameters | |
# Be sure that the bos and eos index match with the BPEs ones | |
blank_index: 0 | |
unk_index: 1 | |
# | |
# Functions and classes | |
# | |
epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter | |
limit: !ref <number_of_epochs> | |
augmentation: !new:speechbrain.lobes.augment.TimeDomainSpecAugment | |
sample_rate: !ref <sample_rate> | |
speeds: [95, 100, 105] | |
enc: !new:speechbrain.nnet.containers.Sequential | |
input_shape: [null, null, !ref <wav2vec_output_dim>] | |
linear1: !name:speechbrain.nnet.linear.Linear | |
n_neurons: !ref <dnn_neurons> | |
bias: True | |
bn1: !name:speechbrain.nnet.normalization.BatchNorm1d | |
activation: !new:torch.nn.LeakyReLU | |
drop: !new:torch.nn.Dropout | |
p: !ref <dropout> | |
linear2: !name:speechbrain.nnet.linear.Linear | |
n_neurons: !ref <dnn_neurons> | |
bias: True | |
bn2: !name:speechbrain.nnet.normalization.BatchNorm1d | |
activation2: !new:torch.nn.LeakyReLU | |
drop2: !new:torch.nn.Dropout | |
p: !ref <dropout> | |
linear3: !name:speechbrain.nnet.linear.Linear | |
n_neurons: !ref <dnn_neurons> | |
bias: True | |
bn3: !name:speechbrain.nnet.normalization.BatchNorm1d | |
activation3: !new:torch.nn.LeakyReLU | |
wav2vec2: !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2 | |
source: wavlm-large/ | |
output_norm: False | |
freeze: !ref <freeze_wav2vec> | |
freeze_feature_extractor: !ref <freeze_feature_extractor> | |
save_path: !ref <wav2vec2_folder> | |
ctc_lin: !new:speechbrain.nnet.linear.Linear | |
input_size: !ref <dnn_neurons> | |
n_neurons: !ref <output_neurons> | |
log_softmax: !new:speechbrain.nnet.activations.Softmax | |
apply_log: True | |
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss | |
blank_index: !ref <blank_index> | |
modules: | |
wav2vec2: !ref <wav2vec2> | |
enc: !ref <enc> | |
ctc_lin: !ref <ctc_lin> | |
model: !new:torch.nn.ModuleList | |
- [!ref <enc>, !ref <ctc_lin>] | |
model_opt_class: !name:torch.optim.Adadelta | |
lr: !ref <lr> | |
rho: 0.95 | |
eps: 1.e-8 | |
wav2vec_opt_class: !name:torch.optim.Adam | |
lr: !ref <lr_wav2vec> | |
lr_annealing_model: !new:speechbrain.nnet.schedulers.NewBobScheduler | |
initial_value: !ref <lr> | |
improvement_threshold: 0.0025 | |
annealing_factor: 0.8 | |
patient: 0 | |
lr_annealing_wav2vec: !new:speechbrain.nnet.schedulers.NewBobScheduler | |
initial_value: !ref <lr_wav2vec> | |
improvement_threshold: 0.0025 | |
annealing_factor: 0.9 | |
patient: 0 | |
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer | |
checkpoints_dir: !ref <save_folder> | |
recoverables: | |
wav2vec2: !ref <wav2vec2> | |
model: !ref <model> | |
scheduler_model: !ref <lr_annealing_model> | |
scheduler_wav2vec: !ref <lr_annealing_wav2vec> | |
counter: !ref <epoch_counter> | |
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger | |
save_file: !ref <train_log> | |
error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats | |
cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats | |
split_tokens: True | |