# first time - ran this on command line first in directory where I am putting app.py: git clone https://huggingface.co./spaces/brdemorin/chat # this will create a "chat" directory. This "app.py" file will need to be saved to that chat directory # change directory in command line to: C:\Users\brian.morin\Documents\HuggingFace\chat # then do the below. Must do the below everytime I make changes to app.py # 1 -> change directory to: cd C:\Users\brian.morin\Documents\HuggingFace\chat # 2 git add app.py # 3. git commit -m "Add application file" # 4. git push # 5. # I'm not sure if I actually need to do this: in your terminal, navigate to the directory containing your app.py file and run the command: streamlit run app.py # 6. # then navigate here: https://huggingface.co./spaces/brdemorin/chat import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer x = st.slider('Select a value') st.write(x, 'squared is', x * x) # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("brdemorin/Phi3_80_steps") model = AutoModelForCausalLM.from_pretrained("brdemorin/Phi3_80_steps") # Create a text input for the user to enter their message user_input = st.text_input("Enter your message:") # When the user enters a message and presses enter, generate a response if user_input: # Encode the user's message and pass it to the model input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt') generated_response_ids = model.generate(input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # Decode the model's output IDs to a string and display it generated_response = tokenizer.decode(generated_response_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True) st.write(generated_response)