Brian Morin commited on
Commit
58802f0
1 Parent(s): 042b900

Add application file

Browse files
Files changed (1) hide show
  1. app.py +35 -9
app.py CHANGED
@@ -1,17 +1,43 @@
1
- import streamlit as st
2
-
3
  # ran this on command line first in directory where I am putting app.py: git clone https://huggingface.co/spaces/brdemorin/chat
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
  x = st.slider('Select a value')
6
  st.write(x, 'squared is', x * x)
7
 
 
 
 
8
 
9
- # change directory in command line to: C:\Users\brian.morin\Documents\HuggingFace
 
10
 
11
- # then do the below to commit and push:
 
 
 
 
12
 
13
- """
14
- git add app.py
15
- git commit -m "Add application file"
16
- git push
17
- """
 
 
 
1
  # ran this on command line first in directory where I am putting app.py: git clone https://huggingface.co/spaces/brdemorin/chat
2
+ # this will create a "chat" directory. This "app.py" file will need to be saved to that chat directory
3
+ # change directory in command line to: C:\Users\brian.morin\Documents\HuggingFace\chat
4
+ # then do the below. Must do the below everytime I make changes to app.py
5
+
6
+ """
7
+ git add app.py
8
+ git commit -m "Add application file"
9
+ git push
10
+ """
11
+ # I'm not sure if I actually need to do this: in your terminal, navigate to the directory containing your app.py file and run the command: streamlit run app.py
12
+
13
+ # then navigate here: https://huggingface.co/spaces/brdemorin/chat
14
+
15
+
16
+
17
+
18
+
19
+
20
+
21
+
22
+ import streamlit as st
23
+ from transformers import AutoModelForCausalLM, AutoTokenizer
24
 
25
  x = st.slider('Select a value')
26
  st.write(x, 'squared is', x * x)
27
 
28
+ # Load the tokenizer and model
29
+ tokenizer = AutoTokenizer.from_pretrained("brdemorin/Phi3-custom_60-steps")
30
+ model = AutoModelForCausalLM.from_pretrained("brdemorin/Phi3-custom_60-steps")
31
 
32
+ # Create a text input for the user to enter their message
33
+ user_input = st.text_input("Enter your message:")
34
 
35
+ # When the user enters a message and presses enter, generate a response
36
+ if user_input:
37
+ # Encode the user's message and pass it to the model
38
+ input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')
39
+ generated_response_ids = model.generate(input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
40
 
41
+ # Decode the model's output IDs to a string and display it
42
+ generated_response = tokenizer.decode(generated_response_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
43
+ st.write(generated_response)