![banner](assets/mast3r.jpg) Official implementation of `Grounding Image Matching in 3D with MASt3R` [[Project page](https://dust3r.europe.naverlabs.com/)], [[MASt3R arxiv](https://arxiv.org/abs/2406.09756)], [[DUSt3R arxiv](https://arxiv.org/abs/2312.14132)] ![Example of matching results obtained from MASt3R](assets/examples.jpg) ![High level overview of MASt3R's architecture](assets/mast3r_archi.jpg) ```bibtex @misc{mast3r_arxiv24, title={Grounding Image Matching in 3D with MASt3R}, author={Vincent Leroy and Yohann Cabon and Jerome Revaud}, year={2024}, eprint={2406.09756}, archivePrefix={arXiv}, primaryClass={cs.CV} } @inproceedings{dust3r_cvpr24, title={DUSt3R: Geometric 3D Vision Made Easy}, author={Shuzhe Wang and Vincent Leroy and Yohann Cabon and Boris Chidlovskii and Jerome Revaud}, booktitle = {CVPR}, year = {2024} } ``` ## Table of Contents - [Table of Contents](#table-of-contents) - [License](#license) - [Get Started](#get-started) - [Installation](#installation) - [Checkpoints](#checkpoints) - [Interactive demo](#interactive-demo) - [Interactive demo with docker](#interactive-demo-with-docker) - [Usage](#usage) - [Training](#training) - [Datasets](#datasets) - [Demo](#demo) - [Our Hyperparameters](#our-hyperparameters) - [Visual Localization](#visual-localization) - [Dataset Preparation](#dataset-preparation) - [Example Commands](#example-commands) ## License The code is distributed under the CC BY-NC-SA 4.0 License. See [LICENSE](LICENSE) for more information. ```python # Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). ``` ## Get Started ### Installation 1. Clone MASt3R. ```bash git clone --recursive https://github.com/naver/mast3r cd mast3r # if you have already cloned mast3r: # git submodule update --init --recursive ``` 2. Create the environment, here we show an example using conda. ```bash conda create -n mast3r python=3.11 cmake=3.14.0 conda activate mast3r conda install pytorch torchvision pytorch-cuda=12.1 -c pytorch -c nvidia # use the correct version of cuda for your system pip install -r requirements.txt pip install -r dust3r/requirements.txt # Optional: you can also install additional packages to: # - add support for HEIC images # - add required packages for visloc.py pip install -r dust3r/requirements_optional.txt ``` 3. Optional, compile the cuda kernels for RoPE (as in CroCo v2). ```bash # DUST3R relies on RoPE positional embeddings for which you can compile some cuda kernels for faster runtime. cd dust3r/croco/models/curope/ python setup.py build_ext --inplace cd ../../../../ ``` ### Checkpoints You can obtain the checkpoints by two ways: 1) You can use our huggingface_hub integration: the models will be downloaded automatically. 2) Otherwise, We provide several pre-trained models: | Modelname | Training resolutions | Head | Encoder | Decoder | |-------------|----------------------|------|---------|---------| | [`MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric`](https://download.europe.naverlabs.com/ComputerVision/MASt3R/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth) | 512x384, 512x336, 512x288, 512x256, 512x160 | CatMLP+DPT | ViT-L | ViT-B | You can check the hyperparameters we used to train these models in the [section: Our Hyperparameters](#our-hyperparameters) Make sure to check license of the datasets we used. To download a specific model, for example `MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth`: ```bash mkdir -p checkpoints/ wget https://download.europe.naverlabs.com/ComputerVision/MASt3R/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth -P checkpoints/ ``` For these checkpoints, make sure to agree to the license of all the training datasets we used, in addition to CC-BY-NC-SA 4.0. The mapfree dataset license in particular is very restrictive. For more information, check [CHECKPOINTS_NOTICE](CHECKPOINTS_NOTICE). ### Interactive demo There are two demos available: ``` demo.py is the updated demo for MASt3R. It uses our new sparse global alignment method that allows you to reconstruct larger scenes python3 demo.py --model_name MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric # Use --weights to load a checkpoint from a local file, eg --weights checkpoints/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth # Use --local_network to make it accessible on the local network, or --server_name to specify the url manually # Use --server_port to change the port, by default it will search for an available port starting at 7860 # Use --device to use a different device, by default it's "cuda" demo_dust3r_ga.py is the same demo as in dust3r (+ compatibility for MASt3R models) see https://github.com/naver/dust3r?tab=readme-ov-file#interactive-demo for details ``` ### Interactive demo with docker TODO ![demo](assets/demo.jpg) ## Usage ```python from mast3r.model import AsymmetricMASt3R from mast3r.fast_nn import fast_reciprocal_NNs import mast3r.utils.path_to_dust3r from dust3r.inference import inference from dust3r.utils.image import load_images if __name__ == '__main__': device = 'cuda' schedule = 'cosine' lr = 0.01 niter = 300 model_name = "naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric" # you can put the path to a local checkpoint in model_name if needed model = AsymmetricMASt3R.from_pretrained(model_name).to(device) images = load_images(['dust3r/croco/assets/Chateau1.png', 'dust3r/croco/assets/Chateau2.png'], size=512) output = inference([tuple(images)], model, device, batch_size=1, verbose=False) # at this stage, you have the raw dust3r predictions view1, pred1 = output['view1'], output['pred1'] view2, pred2 = output['view2'], output['pred2'] desc1, desc2 = pred1['desc'].squeeze(0).detach(), pred2['desc'].squeeze(0).detach() # find 2D-2D matches between the two images matches_im0, matches_im1 = fast_reciprocal_NNs(desc1, desc2, subsample_or_initxy1=8, device=device, dist='dot', block_size=2**13) # ignore small border around the edge H0, W0 = view1['true_shape'][0] valid_matches_im0 = (matches_im0[:, 0] >= 3) & (matches_im0[:, 0] < int(W0) - 3) & ( matches_im0[:, 1] >= 3) & (matches_im0[:, 1] < int(H0) - 3) H1, W1 = view2['true_shape'][0] valid_matches_im1 = (matches_im1[:, 0] >= 3) & (matches_im1[:, 0] < int(W1) - 3) & ( matches_im1[:, 1] >= 3) & (matches_im1[:, 1] < int(H1) - 3) valid_matches = valid_matches_im0 & valid_matches_im1 matches_im0, matches_im1 = matches_im0[valid_matches], matches_im1[valid_matches] # visualize a few matches import numpy as np import torch import torchvision.transforms.functional from matplotlib import pyplot as pl n_viz = 20 num_matches = matches_im0.shape[0] match_idx_to_viz = np.round(np.linspace(0, num_matches - 1, n_viz)).astype(int) viz_matches_im0, viz_matches_im1 = matches_im0[match_idx_to_viz], matches_im1[match_idx_to_viz] image_mean = torch.as_tensor([0.5, 0.5, 0.5], device='cpu').reshape(1, 3, 1, 1) image_std = torch.as_tensor([0.5, 0.5, 0.5], device='cpu').reshape(1, 3, 1, 1) viz_imgs = [] for i, view in enumerate([view1, view2]): rgb_tensor = view['img'] * image_std + image_mean viz_imgs.append(rgb_tensor.squeeze(0).permute(1, 2, 0).cpu().numpy()) H0, W0, H1, W1 = *viz_imgs[0].shape[:2], *viz_imgs[1].shape[:2] img0 = np.pad(viz_imgs[0], ((0, max(H1 - H0, 0)), (0, 0), (0, 0)), 'constant', constant_values=0) img1 = np.pad(viz_imgs[1], ((0, max(H0 - H1, 0)), (0, 0), (0, 0)), 'constant', constant_values=0) img = np.concatenate((img0, img1), axis=1) pl.figure() pl.imshow(img) cmap = pl.get_cmap('jet') for i in range(n_viz): (x0, y0), (x1, y1) = viz_matches_im0[i].T, viz_matches_im1[i].T pl.plot([x0, x1 + W0], [y0, y1], '-+', color=cmap(i / (n_viz - 1)), scalex=False, scaley=False) pl.show(block=True) ``` ![matching example on croco pair](assets/matching.jpg) ## Training In this section, we present a short demonstration to get started with training MASt3R. ### Datasets See [Datasets section in DUSt3R](https://github.com/naver/dust3r/tree/datasets?tab=readme-ov-file#datasets) ### Demo Like for the DUSt3R training demo, we're going to download and prepare the same subset of [CO3Dv2](https://github.com/facebookresearch/co3d) - [Creative Commons Attribution-NonCommercial 4.0 International](https://github.com/facebookresearch/co3d/blob/main/LICENSE) and launch the training code on it. It is the exact same process as DUSt3R. The demo model will be trained for a few epochs on a very small dataset. It will not be very good. ```bash # download and prepare the co3d subset mkdir -p data/co3d_subset cd data/co3d_subset git clone https://github.com/facebookresearch/co3d cd co3d python3 ./co3d/download_dataset.py --download_folder ../ --single_sequence_subset rm ../*.zip cd ../../.. python3 datasets_preprocess/preprocess_co3d.py --co3d_dir data/co3d_subset --output_dir data/co3d_subset_processed --single_sequence_subset # download the pretrained dust3r checkpoint mkdir -p checkpoints/ wget https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth -P checkpoints/ # for this example we'll do fewer epochs, for the actual hyperparameters we used in the paper, see the next section: "Our Hyperparameters" torchrun --nproc_per_node=4 train.py \ --train_dataset "1000 @ Co3d(split='train', ROOT='data/co3d_subset_processed', aug_crop='auto', aug_monocular=0.005, aug_rot90='diff', mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], n_corres=8192, nneg=0.5, transform=ColorJitter)" \ --test_dataset "100 @ Co3d(split='test', ROOT='data/co3d_subset_processed', resolution=(512,384), n_corres=1024, seed=777)" \ --model "AsymmetricMASt3R(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='catmlp+dpt', output_mode='pts3d+desc24', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12, two_confs=True)" \ --train_criterion "ConfLoss(Regr3D(L21, norm_mode='?avg_dis'), alpha=0.2) + 0.075*ConfMatchingLoss(MatchingLoss(InfoNCE(mode='proper', temperature=0.05), negatives_padding=0, blocksize=8192), alpha=10.0, confmode='mean')" \ --test_criterion "Regr3D_ScaleShiftInv(L21, norm_mode='?avg_dis', gt_scale=True, sky_loss_value=0) + -1.*MatchingLoss(APLoss(nq='torch', fp=torch.float16), negatives_padding=12288)" \ --pretrained "checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth" \ --lr 0.0001 --min_lr 1e-06 --warmup_epochs 1 --epochs 10 --batch_size 4 --accum_iter 4 \ --save_freq 1 --keep_freq 5 --eval_freq 1 \ --output_dir "checkpoints/mast3r_demo" ``` ### Our Hyperparameters We didn't release all the training datasets, but here are the commands we used for training our models: ```bash # MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric - train mast3r with metric regression and matching loss # we used cosxl to generate variations of DL3DV: "foggy", "night", "rainy", "snow", "sunny" but we were not convinced by it. torchrun --nproc_per_node=8 train.py \ --train_dataset "57_000 @ Habitat512(1_000_000, split='train', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 68_400 @ BlendedMVS(split='train', mask_sky=True, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 68_400 @ MegaDepth(split='train', mask_sky=True, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 45_600 @ ARKitScenes(split='train', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 22_800 @ Co3d(split='train', mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 22_800 @ StaticThings3D(mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 45_600 @ ScanNetpp(split='train', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 45_600 @ TartanAir(pairs_subset='', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 4_560 @ UnrealStereo4K(resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 1_140 @ VirtualKitti(optical_center_is_centered=True, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 22_800 @ WildRgbd(split='train', mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 145_920 @ NianticMapFree(split='train', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 57_000 @ DL3DV(split='nlight', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 57_000 @ DL3DV(split='not-nlight', cosxl_augmentations=None, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5) + 34_200 @ InternalUnreleasedDataset(resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5)" \ --test_dataset "Habitat512(1_000, split='val', resolution=(512,384), seed=777, n_corres=1024) + 1_000 @ BlendedMVS(split='val', resolution=(512,384), mask_sky=True, seed=777, n_corres=1024) + 1_000 @ ARKitScenes(split='test', resolution=(512,384), seed=777, n_corres=1024) + 1_000 @ MegaDepth(split='val', mask_sky=True, resolution=(512,336), seed=777, n_corres=1024) + 1_000 @ Co3d(split='test', resolution=(512,384), mask_bg='rand', seed=777, n_corres=1024)" \ --model "AsymmetricMASt3R(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='catmlp+dpt', output_mode='pts3d+desc24', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12, two_confs=True, desc_conf_mode=('exp', 0, inf))" \ --train_criterion "ConfLoss(Regr3D(L21, norm_mode='?avg_dis'), alpha=0.2, loss_in_log=False) + 0.075*ConfMatchingLoss(MatchingLoss(InfoNCE(mode='proper', temperature=0.05), negatives_padding=0, blocksize=8192), alpha=10.0, confmode='mean')" \ --test_criterion "Regr3D(L21, norm_mode='?avg_dis', gt_scale=True, sky_loss_value=0) + -1.*MatchingLoss(APLoss(nq='torch', fp=torch.float16), negatives_padding=12288)" \ --pretrained "checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth" \ --lr 0.0001 --min_lr 1e-06 --warmup_epochs 8 --epochs 50 --batch_size 4 --accum_iter 2 \ --save_freq 1 --keep_freq 5 --eval_freq 1 --print_freq=10 \ --output_dir "checkpoints/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric" ``` ## Visual Localization ### Dataset preparation See [Visloc section in DUSt3R](https://github.com/naver/dust3r/tree/dust3r_visloc#dataset-preparation) ### Example Commands With `visloc.py` you can run our visual localization experiments on Aachen-Day-Night, InLoc, Cambridge Landmarks and 7 Scenes. ```bash # Aachen-Day-Night-v1.1: # scene in 'day' 'night' # scene can also be 'all' python3 visloc.py --model_name MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric --dataset "VislocAachenDayNight('/path/to/prepared/Aachen-Day-Night-v1.1/', subscene='${scene}', pairsfile='fire_top50', topk=20)" --pixel_tol 5 --pnp_mode poselib --reprojection_error_diag_ratio 0.008 --output_dir /path/to/output/Aachen-Day-Night-v1.1/${scene}/loc # or with coarse to fine: python3 visloc.py --model_name MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric --dataset "VislocAachenDayNight('/path/to/prepared/Aachen-Day-Night-v1.1/', subscene='${scene}', pairsfile='fire_top50', topk=20)" --pixel_tol 5 --pnp_mode poselib --reprojection_error_diag_ratio 0.008 --output_dir /path/to/output/Aachen-Day-Night-v1.1/${scene}/loc --coarse_to_fine --max_batch_size 48 --c2f_crop_with_homography # InLoc python3 visloc.py --model_name MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric --dataset "VislocInLoc('/path/to/prepared/InLoc/', pairsfile='pairs-query-netvlad40-temporal', topk=20)" --pixel_tol 5 --pnp_mode poselib --reprojection_error_diag_ratio 0.008 --output_dir /path/to/output/InLoc/loc # or with coarse to fine: python3 visloc.py --model_name MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric --dataset "VislocInLoc('/path/to/prepared/InLoc/', pairsfile='pairs-query-netvlad40-temporal', topk=20)" --pixel_tol 5 --pnp_mode poselib --reprojection_error_diag_ratio 0.008 --output_dir /path/to/output/InLoc/loc --coarse_to_fine --max_image_size 1200 --max_batch_size 48 --c2f_crop_with_homography # 7-scenes: # scene in 'chess' 'fire' 'heads' 'office' 'pumpkin' 'redkitchen' 'stairs' python3 visloc.py --model_name MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric --dataset "VislocSevenScenes('/path/to/prepared/7-scenes/', subscene='${scene}', pairsfile='APGeM-LM18_top20', topk=1)" --pixel_tol 5 --pnp_mode poselib --reprojection_error_diag_ratio 0.008 --output_dir /path/to/output/7-scenes/${scene}/loc # Cambridge Landmarks: # scene in 'ShopFacade' 'GreatCourt' 'KingsCollege' 'OldHospital' 'StMarysChurch' python3 visloc.py --model_name MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric --dataset "VislocCambridgeLandmarks('/path/to/prepared/Cambridge_Landmarks/', subscene='${scene}', pairsfile='APGeM-LM18_top20', topk=1)" --pixel_tol 5 --pnp_mode poselib --reprojection_error_diag_ratio 0.008 --output_dir /path/to/output/Cambridge_Landmarks/${scene}/loc ```