Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python3 | |
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# visloc script with support for coarse to fine | |
# -------------------------------------------------------- | |
import os | |
import numpy as np | |
import random | |
import torch | |
import torchvision.transforms as tvf | |
import argparse | |
from tqdm import tqdm | |
from PIL import Image | |
import math | |
from mast3r.model import AsymmetricMASt3R | |
from mast3r.fast_nn import fast_reciprocal_NNs | |
from mast3r.utils.coarse_to_fine import select_pairs_of_crops, crop_slice | |
from mast3r.utils.collate import cat_collate, cat_collate_fn_map | |
from mast3r.utils.misc import mkdir_for | |
from mast3r.datasets.utils.cropping import crop_to_homography | |
import mast3r.utils.path_to_dust3r # noqa | |
from dust3r.inference import inference, loss_of_one_batch | |
from dust3r.utils.geometry import geotrf, colmap_to_opencv_intrinsics, opencv_to_colmap_intrinsics | |
from dust3r.datasets.utils.transforms import ImgNorm | |
from dust3r_visloc.datasets import * | |
from dust3r_visloc.localization import run_pnp | |
from dust3r_visloc.evaluation import get_pose_error, aggregate_stats, export_results | |
from dust3r_visloc.datasets.utils import get_HW_resolution, rescale_points3d | |
def get_args_parser(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--dataset", type=str, required=True, help="visloc dataset to eval") | |
parser_weights = parser.add_mutually_exclusive_group(required=True) | |
parser_weights.add_argument("--weights", type=str, help="path to the model weights", default=None) | |
parser_weights.add_argument("--model_name", type=str, help="name of the model weights", | |
choices=["MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric"]) | |
parser.add_argument("--confidence_threshold", type=float, default=1.001, | |
help="confidence values higher than threshold are invalid") | |
parser.add_argument('--pixel_tol', default=5, type=int) | |
parser.add_argument("--coarse_to_fine", action='store_true', default=False, | |
help="do the matching from coarse to fine") | |
parser.add_argument("--max_image_size", type=int, default=None, | |
help="max image size for the fine resolution") | |
parser.add_argument("--c2f_crop_with_homography", action='store_true', default=False, | |
help="when using coarse to fine, crop with homographies to keep cx, cy centered") | |
parser.add_argument("--device", type=str, default='cuda', help="pytorch device") | |
parser.add_argument("--pnp_mode", type=str, default="cv2", choices=['cv2', 'poselib', 'pycolmap'], | |
help="pnp lib to use") | |
parser_reproj = parser.add_mutually_exclusive_group() | |
parser_reproj.add_argument("--reprojection_error", type=float, default=5.0, help="pnp reprojection error") | |
parser_reproj.add_argument("--reprojection_error_diag_ratio", type=float, default=None, | |
help="pnp reprojection error as a ratio of the diagonal of the image") | |
parser.add_argument("--max_batch_size", type=int, default=48, | |
help="max batch size for inference on crops when using coarse to fine") | |
parser.add_argument("--pnp_max_points", type=int, default=100_000, help="pnp maximum number of points kept") | |
parser.add_argument("--viz_matches", type=int, default=0, help="debug matches") | |
parser.add_argument("--output_dir", type=str, default=None, help="output path") | |
parser.add_argument("--output_label", type=str, default='', help="prefix for results files") | |
return parser | |
def coarse_matching(query_view, map_view, model, device, pixel_tol, fast_nn_params): | |
# prepare batch | |
imgs = [] | |
for idx, img in enumerate([query_view['rgb_rescaled'], map_view['rgb_rescaled']]): | |
imgs.append(dict(img=img.unsqueeze(0), true_shape=np.int32([img.shape[1:]]), | |
idx=idx, instance=str(idx))) | |
output = inference([tuple(imgs)], model, device, batch_size=1, verbose=False) | |
pred1, pred2 = output['pred1'], output['pred2'] | |
conf_list = [pred1['desc_conf'].squeeze(0).cpu().numpy(), pred2['desc_conf'].squeeze(0).cpu().numpy()] | |
desc_list = [pred1['desc'].squeeze(0).detach(), pred2['desc'].squeeze(0).detach()] | |
# find 2D-2D matches between the two images | |
PQ, PM = desc_list[0], desc_list[1] | |
if len(PQ) == 0 or len(PM) == 0: | |
return [], [], [], [] | |
if pixel_tol == 0: | |
matches_im_map, matches_im_query = fast_reciprocal_NNs(PM, PQ, subsample_or_initxy1=8, **fast_nn_params) | |
HM, WM = map_view['rgb_rescaled'].shape[1:] | |
HQ, WQ = query_view['rgb_rescaled'].shape[1:] | |
# ignore small border around the edge | |
valid_matches_map = (matches_im_map[:, 0] >= 3) & (matches_im_map[:, 0] < WM - 3) & ( | |
matches_im_map[:, 1] >= 3) & (matches_im_map[:, 1] < HM - 3) | |
valid_matches_query = (matches_im_query[:, 0] >= 3) & (matches_im_query[:, 0] < WQ - 3) & ( | |
matches_im_query[:, 1] >= 3) & (matches_im_query[:, 1] < HQ - 3) | |
valid_matches = valid_matches_map & valid_matches_query | |
matches_im_map = matches_im_map[valid_matches] | |
matches_im_query = matches_im_query[valid_matches] | |
valid_pts3d = [] | |
matches_confs = [] | |
else: | |
yM, xM = torch.where(map_view['valid_rescaled']) | |
matches_im_map, matches_im_query = fast_reciprocal_NNs(PM, PQ, (xM, yM), pixel_tol=pixel_tol, **fast_nn_params) | |
valid_pts3d = map_view['pts3d_rescaled'].cpu().numpy()[matches_im_map[:, 1], matches_im_map[:, 0]] | |
matches_confs = np.minimum( | |
conf_list[1][matches_im_map[:, 1], matches_im_map[:, 0]], | |
conf_list[0][matches_im_query[:, 1], matches_im_query[:, 0]] | |
) | |
# from cv2 to colmap | |
matches_im_query = matches_im_query.astype(np.float64) | |
matches_im_map = matches_im_map.astype(np.float64) | |
matches_im_query[:, 0] += 0.5 | |
matches_im_query[:, 1] += 0.5 | |
matches_im_map[:, 0] += 0.5 | |
matches_im_map[:, 1] += 0.5 | |
# rescale coordinates | |
matches_im_query = geotrf(query_view['to_orig'], matches_im_query, norm=True) | |
matches_im_map = geotrf(map_view['to_orig'], matches_im_map, norm=True) | |
# from colmap back to cv2 | |
matches_im_query[:, 0] -= 0.5 | |
matches_im_query[:, 1] -= 0.5 | |
matches_im_map[:, 0] -= 0.5 | |
matches_im_map[:, 1] -= 0.5 | |
return valid_pts3d, matches_im_query, matches_im_map, matches_confs | |
def crops_inference(pairs, model, device, batch_size=48, verbose=True): | |
assert len(pairs) == 2, "Error, data should be a tuple of dicts containing the batch of image pairs" | |
# Forward a possibly big bunch of data, by blocks of batch_size | |
B = pairs[0]['img'].shape[0] | |
if B < batch_size: | |
return loss_of_one_batch(pairs, model, None, device=device, symmetrize_batch=False) | |
preds = [] | |
for ii in range(0, B, batch_size): | |
sel = slice(ii, ii + min(B - ii, batch_size)) | |
temp_data = [{}, {}] | |
for di in [0, 1]: | |
temp_data[di] = {kk: pairs[di][kk][sel] | |
for kk in pairs[di].keys() if pairs[di][kk] is not None} # copy chunk for forward | |
preds.append(loss_of_one_batch(temp_data, model, | |
None, device=device, symmetrize_batch=False)) # sequential forward | |
# Merge all preds | |
return cat_collate(preds, collate_fn_map=cat_collate_fn_map) | |
def fine_matching(query_views, map_views, model, device, max_batch_size, pixel_tol, fast_nn_params): | |
assert pixel_tol > 0 | |
output = crops_inference([query_views, map_views], | |
model, device, batch_size=max_batch_size, verbose=False) | |
pred1, pred2 = output['pred1'], output['pred2'] | |
descs1 = pred1['desc'].clone() | |
descs2 = pred2['desc'].clone() | |
confs1 = pred1['desc_conf'].clone() | |
confs2 = pred2['desc_conf'].clone() | |
# Compute matches | |
valid_pts3d, matches_im_map, matches_im_query, matches_confs = [], [], [], [] | |
for ppi, (pp1, pp2, cc11, cc21) in enumerate(zip(descs1, descs2, confs1, confs2)): | |
valid_ppi = map_views['valid'][ppi] | |
pts3d_ppi = map_views['pts3d'][ppi].cpu().numpy() | |
conf_list_ppi = [cc11.cpu().numpy(), cc21.cpu().numpy()] | |
y_ppi, x_ppi = torch.where(valid_ppi) | |
matches_im_map_ppi, matches_im_query_ppi = fast_reciprocal_NNs(pp2, pp1, (x_ppi, y_ppi), | |
pixel_tol=pixel_tol, **fast_nn_params) | |
valid_pts3d_ppi = pts3d_ppi[matches_im_map_ppi[:, 1], matches_im_map_ppi[:, 0]] | |
matches_confs_ppi = np.minimum( | |
conf_list_ppi[1][matches_im_map_ppi[:, 1], matches_im_map_ppi[:, 0]], | |
conf_list_ppi[0][matches_im_query_ppi[:, 1], matches_im_query_ppi[:, 0]] | |
) | |
# inverse operation where we uncrop pixel coordinates | |
matches_im_map_ppi = geotrf(map_views['to_orig'][ppi].cpu().numpy(), matches_im_map_ppi.copy(), norm=True) | |
matches_im_query_ppi = geotrf(query_views['to_orig'][ppi].cpu().numpy(), matches_im_query_ppi.copy(), norm=True) | |
matches_im_map.append(matches_im_map_ppi) | |
matches_im_query.append(matches_im_query_ppi) | |
valid_pts3d.append(valid_pts3d_ppi) | |
matches_confs.append(matches_confs_ppi) | |
if len(valid_pts3d) == 0: | |
return [], [], [], [] | |
matches_im_map = np.concatenate(matches_im_map, axis=0) | |
matches_im_query = np.concatenate(matches_im_query, axis=0) | |
valid_pts3d = np.concatenate(valid_pts3d, axis=0) | |
matches_confs = np.concatenate(matches_confs, axis=0) | |
return valid_pts3d, matches_im_query, matches_im_map, matches_confs | |
def crop(img, mask, pts3d, crop, intrinsics=None): | |
out_cropped_img = img.clone() | |
if mask is not None: | |
out_cropped_mask = mask.clone() | |
else: | |
out_cropped_mask = None | |
if pts3d is not None: | |
out_cropped_pts3d = pts3d.clone() | |
else: | |
out_cropped_pts3d = None | |
to_orig = torch.eye(3, device=img.device) | |
# If intrinsics available, crop and apply rectifying homography. Otherwise, just crop | |
if intrinsics is not None: | |
K_old = intrinsics | |
imsize, K_new, R, H = crop_to_homography(K_old, crop) | |
# apply homography to image | |
H /= H[2, 2] | |
homo8 = H.ravel().tolist()[:8] | |
# From float tensor to uint8 PIL Image | |
pilim = Image.fromarray((255 * (img + 1.) / 2).to(torch.uint8).numpy()) | |
pilout_cropped_img = pilim.transform(imsize, Image.Transform.PERSPECTIVE, | |
homo8, resample=Image.Resampling.BICUBIC) | |
# From uint8 PIL Image to float tensor | |
out_cropped_img = 2. * torch.tensor(np.array(pilout_cropped_img)).to(img) / 255. - 1. | |
if out_cropped_mask is not None: | |
pilmask = Image.fromarray((255 * out_cropped_mask).to(torch.uint8).numpy()) | |
pilout_cropped_mask = pilmask.transform( | |
imsize, Image.Transform.PERSPECTIVE, homo8, resample=Image.Resampling.NEAREST) | |
out_cropped_mask = torch.from_numpy(np.array(pilout_cropped_mask) > 0).to(out_cropped_mask.dtype) | |
if out_cropped_pts3d is not None: | |
out_cropped_pts3d = out_cropped_pts3d.numpy() | |
out_cropped_X = np.array(Image.fromarray(out_cropped_pts3d[:, :, 0]).transform(imsize, | |
Image.Transform.PERSPECTIVE, | |
homo8, | |
resample=Image.Resampling.NEAREST)) | |
out_cropped_Y = np.array(Image.fromarray(out_cropped_pts3d[:, :, 1]).transform(imsize, | |
Image.Transform.PERSPECTIVE, | |
homo8, | |
resample=Image.Resampling.NEAREST)) | |
out_cropped_Z = np.array(Image.fromarray(out_cropped_pts3d[:, :, 2]).transform(imsize, | |
Image.Transform.PERSPECTIVE, | |
homo8, | |
resample=Image.Resampling.NEAREST)) | |
out_cropped_pts3d = torch.from_numpy(np.stack([out_cropped_X, out_cropped_Y, out_cropped_Z], axis=-1)) | |
to_orig = torch.tensor(H, device=img.device) | |
else: | |
out_cropped_img = img[crop_slice(crop)] | |
if out_cropped_mask is not None: | |
out_cropped_mask = out_cropped_mask[crop_slice(crop)] | |
if out_cropped_pts3d is not None: | |
out_cropped_pts3d = out_cropped_pts3d[crop_slice(crop)] | |
to_orig[:2, -1] = torch.tensor(crop[:2]) | |
return out_cropped_img, out_cropped_mask, out_cropped_pts3d, to_orig | |
def resize_image_to_max(max_image_size, rgb, K): | |
W, H = rgb.size | |
if max_image_size and max(W, H) > max_image_size: | |
islandscape = (W >= H) | |
if islandscape: | |
WMax = max_image_size | |
HMax = int(H * (WMax / W)) | |
else: | |
HMax = max_image_size | |
WMax = int(W * (HMax / H)) | |
resize_op = tvf.Compose([ImgNorm, tvf.Resize(size=[HMax, WMax])]) | |
rgb_tensor = resize_op(rgb).permute(1, 2, 0) | |
to_orig_max = np.array([[W / WMax, 0, 0], | |
[0, H / HMax, 0], | |
[0, 0, 1]]) | |
to_resize_max = np.array([[WMax / W, 0, 0], | |
[0, HMax / H, 0], | |
[0, 0, 1]]) | |
# Generate new camera parameters | |
new_K = opencv_to_colmap_intrinsics(K) | |
new_K[0, :] *= WMax / W | |
new_K[1, :] *= HMax / H | |
new_K = colmap_to_opencv_intrinsics(new_K) | |
else: | |
rgb_tensor = ImgNorm(rgb).permute(1, 2, 0) | |
to_orig_max = np.eye(3) | |
to_resize_max = np.eye(3) | |
HMax, WMax = H, W | |
new_K = K | |
return rgb_tensor, new_K, to_orig_max, to_resize_max, (HMax, WMax) | |
if __name__ == '__main__': | |
parser = get_args_parser() | |
args = parser.parse_args() | |
conf_thr = args.confidence_threshold | |
device = args.device | |
pnp_mode = args.pnp_mode | |
assert args.pixel_tol > 0 | |
reprojection_error = args.reprojection_error | |
reprojection_error_diag_ratio = args.reprojection_error_diag_ratio | |
pnp_max_points = args.pnp_max_points | |
viz_matches = args.viz_matches | |
if args.weights is not None: | |
weights_path = args.weights | |
else: | |
weights_path = "naver/" + args.model_name | |
model = AsymmetricMASt3R.from_pretrained(weights_path).to(args.device) | |
fast_nn_params = dict(device=device, dist='dot', block_size=2**13) | |
dataset = eval(args.dataset) | |
dataset.set_resolution(model) | |
query_names = [] | |
poses_pred = [] | |
pose_errors = [] | |
angular_errors = [] | |
params_str = f'tol_{args.pixel_tol}' + ("_c2f" if args.coarse_to_fine else '') | |
if args.max_image_size is not None: | |
params_str = params_str + f'_{args.max_image_size}' | |
if args.coarse_to_fine and args.c2f_crop_with_homography: | |
params_str = params_str + '_with_homography' | |
for idx in tqdm(range(len(dataset))): | |
views = dataset[(idx)] # 0 is the query | |
query_view = views[0] | |
map_views = views[1:] | |
query_names.append(query_view['image_name']) | |
query_pts2d = [] | |
query_pts3d = [] | |
maxdim = max(model.patch_embed.img_size) | |
query_rgb_tensor, query_K, query_to_orig_max, query_to_resize_max, (HQ, WQ) = resize_image_to_max( | |
args.max_image_size, query_view['rgb'], query_view['intrinsics']) | |
# pairs of crops have the same resolution | |
query_resolution = get_HW_resolution(HQ, WQ, maxdim=maxdim, patchsize=model.patch_embed.patch_size) | |
for map_view in map_views: | |
if args.output_dir is not None: | |
cache_file = os.path.join(args.output_dir, 'matches', params_str, | |
query_view['image_name'], map_view['image_name'] + '.npz') | |
else: | |
cache_file = None | |
if cache_file is not None and os.path.isfile(cache_file): | |
matches = np.load(cache_file) | |
valid_pts3d = matches['valid_pts3d'] | |
matches_im_query = matches['matches_im_query'] | |
matches_im_map = matches['matches_im_map'] | |
matches_conf = matches['matches_conf'] | |
else: | |
# coarse matching | |
if args.coarse_to_fine and (maxdim < max(WQ, HQ)): | |
# use all points | |
_, coarse_matches_im0, coarse_matches_im1, _ = coarse_matching(query_view, map_view, model, device, | |
0, fast_nn_params) | |
# visualize a few matches | |
if viz_matches > 0: | |
num_matches = coarse_matches_im1.shape[0] | |
print(f'found {num_matches} matches') | |
viz_imgs = [np.array(query_view['rgb']), np.array(map_view['rgb'])] | |
from matplotlib import pyplot as pl | |
n_viz = viz_matches | |
match_idx_to_viz = np.round(np.linspace(0, num_matches - 1, n_viz)).astype(int) | |
viz_matches_im_query = coarse_matches_im0[match_idx_to_viz] | |
viz_matches_im_map = coarse_matches_im1[match_idx_to_viz] | |
H0, W0, H1, W1 = *viz_imgs[0].shape[:2], *viz_imgs[1].shape[:2] | |
img0 = np.pad(viz_imgs[0], ((0, max(H1 - H0, 0)), (0, 0), (0, 0)), | |
'constant', constant_values=0) | |
img1 = np.pad(viz_imgs[1], ((0, max(H0 - H1, 0)), (0, 0), (0, 0)), | |
'constant', constant_values=0) | |
img = np.concatenate((img0, img1), axis=1) | |
pl.figure() | |
pl.imshow(img) | |
cmap = pl.get_cmap('jet') | |
for i in range(n_viz): | |
(x0, y0), (x1, y1) = viz_matches_im_query[i].T, viz_matches_im_map[i].T | |
pl.plot([x0, x1 + W0], [y0, y1], '-+', | |
color=cmap(i / (n_viz - 1)), scalex=False, scaley=False) | |
pl.show(block=True) | |
valid_all = map_view['valid'] | |
pts3d = map_view['pts3d'] | |
WM_full, HM_full = map_view['rgb'].size | |
map_rgb_tensor, map_K, map_to_orig_max, map_to_resize_max, (HM, WM) = resize_image_to_max( | |
args.max_image_size, map_view['rgb'], map_view['intrinsics']) | |
if WM_full != WM or HM_full != HM: | |
y_full, x_full = torch.where(valid_all) | |
pos2d_cv2 = torch.stack([x_full, y_full], dim=-1).cpu().numpy().astype(np.float64) | |
sparse_pts3d = pts3d[y_full, x_full].cpu().numpy() | |
_, _, pts3d_max, valid_max = rescale_points3d( | |
pos2d_cv2, sparse_pts3d, map_to_resize_max, HM, WM) | |
pts3d = torch.from_numpy(pts3d_max) | |
valid_all = torch.from_numpy(valid_max) | |
coarse_matches_im0 = geotrf(query_to_resize_max, coarse_matches_im0, norm=True) | |
coarse_matches_im1 = geotrf(map_to_resize_max, coarse_matches_im1, norm=True) | |
crops1, crops2 = [], [] | |
crops_v1, crops_p1 = [], [] | |
to_orig1, to_orig2 = [], [] | |
map_resolution = get_HW_resolution(HM, WM, maxdim=maxdim, patchsize=model.patch_embed.patch_size) | |
for crop_q, crop_b, pair_tag in select_pairs_of_crops(map_rgb_tensor, | |
query_rgb_tensor, | |
coarse_matches_im1, | |
coarse_matches_im0, | |
maxdim=maxdim, | |
overlap=.5, | |
forced_resolution=[map_resolution, | |
query_resolution]): | |
# Per crop processing | |
if not args.c2f_crop_with_homography: | |
map_K = None | |
query_K = None | |
c1, v1, p1, trf1 = crop(map_rgb_tensor, valid_all, pts3d, crop_q, map_K) | |
c2, _, _, trf2 = crop(query_rgb_tensor, None, None, crop_b, query_K) | |
crops1.append(c1) | |
crops2.append(c2) | |
crops_v1.append(v1) | |
crops_p1.append(p1) | |
to_orig1.append(trf1) | |
to_orig2.append(trf2) | |
if len(crops1) == 0 or len(crops2) == 0: | |
valid_pts3d, matches_im_query, matches_im_map, matches_conf = [], [], [], [] | |
else: | |
crops1, crops2 = torch.stack(crops1), torch.stack(crops2) | |
if len(crops1.shape) == 3: | |
crops1, crops2 = crops1[None], crops2[None] | |
crops_v1 = torch.stack(crops_v1) | |
crops_p1 = torch.stack(crops_p1) | |
to_orig1, to_orig2 = torch.stack(to_orig1), torch.stack(to_orig2) | |
map_crop_view = dict(img=crops1.permute(0, 3, 1, 2), | |
instance=['1' for _ in range(crops1.shape[0])], | |
valid=crops_v1, pts3d=crops_p1, | |
to_orig=to_orig1) | |
query_crop_view = dict(img=crops2.permute(0, 3, 1, 2), | |
instance=['2' for _ in range(crops2.shape[0])], | |
to_orig=to_orig2) | |
# Inference and Matching | |
valid_pts3d, matches_im_query, matches_im_map, matches_conf = fine_matching(query_crop_view, | |
map_crop_view, | |
model, device, | |
args.max_batch_size, | |
args.pixel_tol, | |
fast_nn_params) | |
matches_im_query = geotrf(query_to_orig_max, matches_im_query, norm=True) | |
matches_im_map = geotrf(map_to_orig_max, matches_im_map, norm=True) | |
else: | |
# use only valid 2d points | |
valid_pts3d, matches_im_query, matches_im_map, matches_conf = coarse_matching(query_view, map_view, | |
model, device, | |
args.pixel_tol, | |
fast_nn_params) | |
if cache_file is not None: | |
mkdir_for(cache_file) | |
np.savez(cache_file, valid_pts3d=valid_pts3d, matches_im_query=matches_im_query, | |
matches_im_map=matches_im_map, matches_conf=matches_conf) | |
# apply conf | |
if len(matches_conf) > 0: | |
mask = matches_conf >= conf_thr | |
valid_pts3d = valid_pts3d[mask] | |
matches_im_query = matches_im_query[mask] | |
matches_im_map = matches_im_map[mask] | |
matches_conf = matches_conf[mask] | |
# visualize a few matches | |
if viz_matches > 0: | |
num_matches = matches_im_map.shape[0] | |
print(f'found {num_matches} matches') | |
viz_imgs = [np.array(query_view['rgb']), np.array(map_view['rgb'])] | |
from matplotlib import pyplot as pl | |
n_viz = viz_matches | |
match_idx_to_viz = np.round(np.linspace(0, num_matches - 1, n_viz)).astype(int) | |
viz_matches_im_query = matches_im_query[match_idx_to_viz] | |
viz_matches_im_map = matches_im_map[match_idx_to_viz] | |
H0, W0, H1, W1 = *viz_imgs[0].shape[:2], *viz_imgs[1].shape[:2] | |
img0 = np.pad(viz_imgs[0], ((0, max(H1 - H0, 0)), (0, 0), (0, 0)), 'constant', constant_values=0) | |
img1 = np.pad(viz_imgs[1], ((0, max(H0 - H1, 0)), (0, 0), (0, 0)), 'constant', constant_values=0) | |
img = np.concatenate((img0, img1), axis=1) | |
pl.figure() | |
pl.imshow(img) | |
cmap = pl.get_cmap('jet') | |
for i in range(n_viz): | |
(x0, y0), (x1, y1) = viz_matches_im_query[i].T, viz_matches_im_map[i].T | |
pl.plot([x0, x1 + W0], [y0, y1], '-+', color=cmap(i / (n_viz - 1)), scalex=False, scaley=False) | |
pl.show(block=True) | |
if len(valid_pts3d) == 0: | |
pass | |
else: | |
query_pts3d.append(valid_pts3d) | |
query_pts2d.append(matches_im_query) | |
if len(query_pts2d) == 0: | |
success = False | |
pr_querycam_to_world = None | |
else: | |
query_pts2d = np.concatenate(query_pts2d, axis=0).astype(np.float32) | |
query_pts3d = np.concatenate(query_pts3d, axis=0) | |
if len(query_pts2d) > pnp_max_points: | |
idxs = random.sample(range(len(query_pts2d)), pnp_max_points) | |
query_pts3d = query_pts3d[idxs] | |
query_pts2d = query_pts2d[idxs] | |
W, H = query_view['rgb'].size | |
if reprojection_error_diag_ratio is not None: | |
reprojection_error_img = reprojection_error_diag_ratio * math.sqrt(W**2 + H**2) | |
else: | |
reprojection_error_img = reprojection_error | |
success, pr_querycam_to_world = run_pnp(query_pts2d, query_pts3d, | |
query_view['intrinsics'], query_view['distortion'], | |
pnp_mode, reprojection_error_img, img_size=[W, H]) | |
if not success: | |
abs_transl_error = float('inf') | |
abs_angular_error = float('inf') | |
else: | |
abs_transl_error, abs_angular_error = get_pose_error(pr_querycam_to_world, query_view['cam_to_world']) | |
pose_errors.append(abs_transl_error) | |
angular_errors.append(abs_angular_error) | |
poses_pred.append(pr_querycam_to_world) | |
xp_label = params_str + f'_conf_{conf_thr}' | |
if args.output_label: | |
xp_label = args.output_label + "_" + xp_label | |
if reprojection_error_diag_ratio is not None: | |
xp_label = xp_label + f'_reproj_diag_{reprojection_error_diag_ratio}' | |
else: | |
xp_label = xp_label + f'_reproj_err_{reprojection_error}' | |
export_results(args.output_dir, xp_label, query_names, poses_pred) | |
out_string = aggregate_stats(f'{args.dataset}', pose_errors, angular_errors) | |
print(out_string) | |