Spaces:
Configuration error
Configuration error
File size: 17,024 Bytes
48df644 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import shutil
import streamlit as st
st.set_page_config(
page_title="RAG Configuration",
page_icon="🤖",
layout="wide",
initial_sidebar_state="collapsed"
)
import re
import os
import spire.pdf
import fitz
from src.Databases import *
from langchain.text_splitter import *
from sentence_transformers import SentenceTransformer, CrossEncoder
from langchain_community.llms import HuggingFaceHub
from langchain_huggingface import HuggingFaceEmbeddings
from transformers import (AutoFeatureExtractor, AutoModel, AutoImageProcessor)
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
import PyPDF2
class SentenceTransformerEmbeddings:
"""
Wrapper Class for SentenceTransformer Class
"""
def __init__(self, model_name: str):
"""
Initiliases a Sentence Transformer
"""
self.model = SentenceTransformer(model_name)
def embed_documents(self, texts):
"""
Returns a list of embeddings for the given texts.
"""
return self.model.encode(texts, convert_to_tensor=True).tolist()
def embed_query(self, text):
"""
Returns a list of embeddings for the given text.
"""
return self.model.encode(text, convert_to_tensor=True).tolist()
@st.cache_resource(show_spinner=False)
def settings():
return HuggingFaceEmbedding(model_name="BAAI/bge-base-en")
@st.cache_resource(show_spinner=False)
def pine_embedding_model():
return SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2") # 784 dimension + euclidean
@st.cache_resource(show_spinner=False)
def weaviate_embedding_model():
return SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
@st.cache_resource(show_spinner=False)
def load_image_model(model):
extractor = AutoFeatureExtractor.from_pretrained(model)
im_model = AutoModel.from_pretrained(model)
return extractor, im_model
@st.cache_resource(show_spinner=False)
def load_bi_encoder():
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L12-v2", model_kwargs={"device": "cpu"})
@st.cache_resource(show_spinner=False)
def pine_embedding_model():
return SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2") # 784 dimension + euclidean
@st.cache_resource(show_spinner=False)
def weaviate_embedding_model():
return SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
@st.cache_resource(show_spinner=False)
def load_cross():
return CrossEncoder("cross-encoder/ms-marco-TinyBERT-L-2-v2", max_length=512, device="cpu")
@st.cache_resource(show_spinner=False)
def pine_cross_encoder():
return CrossEncoder("cross-encoder/ms-marco-MiniLM-L-12-v2", max_length=512, device="cpu")
@st.cache_resource(show_spinner=False)
def weaviate_cross_encoder():
return CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2", max_length=512, device="cpu")
@st.cache_resource(show_spinner=False)
def load_chat_model():
template = '''
You are an assistant for question-answering tasks.
Use the following pieces of retrieved context to answer the question accurately.
If the question is not related to the context, just answer 'I don't know'.
Question: {question}
Context: {context}
Answer:
'''
return HuggingFaceHub(
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
model_kwargs={"temperature": 0.5, "max_length": 64, "max_new_tokens": 512, "query_wrapper_prompt": template}
)
@st.cache_resource(show_spinner=False)
def load_q_model():
return HuggingFaceHub(
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
model_kwargs={"temperature": 0.5, "max_length": 64, "max_new_tokens": 512}
)
@st.cache_resource(show_spinner=False)
def load_image_model(model):
extractor = AutoFeatureExtractor.from_pretrained(model)
im_model = AutoModel.from_pretrained(model)
return extractor, im_model
@st.cache_resource(show_spinner=False)
def load_nomic_model():
return AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5"), AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5",
trust_remote_code=True)
@st.cache_resource(show_spinner=False)
def vector_database_prep(file):
def data_prep(file):
def findWholeWord(w):
return re.compile(r'\b{0}\b'.format(re.escape(w)), flags=re.IGNORECASE).search
file_name = file.name
pdf_file_path = os.path.join(os.getcwd(), 'pdfs', file_name)
image_folder = os.path.join(os.getcwd(), f'figures_{file_name}')
if not os.path.exists(image_folder):
os.makedirs(image_folder)
# everything down here is wrt pages dir
print('1. folder made')
with spire.pdf.PdfDocument() as doc:
doc.LoadFromFile(pdf_file_path)
images = []
for page_num in range(doc.Pages.Count):
page = doc.Pages[page_num]
for image_num in range(len(page.ImagesInfo)):
imageFileName = os.path.join(image_folder, f'figure-{page_num}-{image_num}.png')
image = page.ImagesInfo[image_num] #This retrieve the image from the current pdf
image.Image.Save(imageFileName) #This line save the image at spcified location for the further use in hadr disk
os.chmod(imageFileName, 0o777)
print("os.chmod(imageFileName, 0o777)") #This provide permission for the current image to edit in the another process
images.append({
"image_file_name": imageFileName,
"image": image
}) #Image object and name of the iamge save in the lsit
print('2. image extraction done')
image_info = []
for image_file in os.listdir(image_folder):
if image_file.endswith('.png'): #This confirm all the images are are in png form
image_info.append({
"image_file_name": image_file[:-4], #image name without .png
"image": Image.open(os.path.join(image_folder, image_file)), #This is location where that image is stored
"pg_no": int(image_file.split('-')[1]) #Image page number where it is present
})
print('3. temporary')
figures = []
with fitz.open(pdf_file_path) as pdf_file:
data = ""
for page in pdf_file:
text = page.get_text()
if not (findWholeWord('table of contents')(text) or findWholeWord('index')(text)):
data += text
data = data.replace('}', '-')
data = data.replace('{', '-')
print('4. Data extraction done')
hs = []
for i in image_info: #here three things are stored
src = i['image_file_name'] + '.png'
headers = {'_': []}
header = '_'
page = pdf_file[i['pg_no']]
texts = page.get_text('dict')
for block in texts['blocks']:
if block['type'] == 0:
for line in block['lines']:
for span in line['spans']:
if 'bol' in span['font'].lower() and not span['text'].isnumeric():
header = span['text']
print("header: ", header)
headers[header] = [header]
else:
headers[header].append(span['text'])
try:
if findWholeWord('fig')(span['text']):
i['image_file_name'] = span['text']
figures.append(span['text'].split('fig')[-1])
elif findWholeWord('figure')(span['text']):
i['image_file_name'] = span['text']
figures.append(span['text'].lower().split('figure')[-1])
else:
pass
except re.error:
pass
if not i['image_file_name'].endswith('.png'):
s = i['image_file_name'] + '.png'
i['image_file_name'] = s
# os.rename(os.path.join(image_folder, src), os.path.join(image_folder, i['image_file_name']))
hs.append({"image": i, "header": headers})
print('5. header and figures done')
figure_contexts = {}
for fig in figures:
figure_contexts[fig] = []
for page_num in range(len(pdf_file)):
page = pdf_file[page_num]
texts = page.get_text('dict')
for block in texts['blocks']:
if block['type'] == 0:
for line in block['lines']:
for span in line['spans']:
if findWholeWord(fig)(span['text']):
print('figure mention: ', span['text'])
figure_contexts[fig].append(span['text'])
print('6. Figure context collected')
contexts = []
for h in hs:
context = ""
for q in h['header'].values():
context += "".join(q)
s = pytesseract.image_to_string(h['image']['image'])
qwea = context + '\n' + s if len(s) != 0 else context
contexts.append((
h['image']['image_file_name'],
qwea,
h['image']['image']
))
print('7. Overall context collected')
image_content = []
for fig in figure_contexts:
for c in contexts:
if findWholeWord(fig)(c[0]):
s = c[1] + '\n' + "\n".join(figure_contexts[fig])
s = str("\n".join(
[
"".join([h for h in i.strip() if h.isprintable()])
for i in s.split('\n')
if len(i.strip()) != 0
]
))
image_content.append((
c[0],
s,
c[2]
))
print('8. Figure context added')
return data, image_content
# Vector Database objects
extractor, i_model = st.session_state['extractor'], st.session_state['image_model']
pinecone_embed = st.session_state['pinecone_embed']
weaviate_embed = st.session_state['weaviate_embed']
vb1 = UnifiedDatabase('vb1', 'lancedb/rag')
vb1.model_prep(extractor, i_model, weaviate_embed,
RecursiveCharacterTextSplitter(chunk_size=1330, chunk_overlap=35))
vb2 = UnifiedDatabase('vb2', 'lancedb/rag')
vb2.model_prep(extractor, i_model, pinecone_embed,
RecursiveCharacterTextSplitter(chunk_size=1330, chunk_overlap=35))
vb_list = [vb1, vb2]
data, image_content = data_prep(file)
for vb in vb_list:
vb.upsert(data)
vb.upsert(image_content) # image_cont = dict[image_file_path, context, PIL]
return vb_list
# Function to extract text from PDF
# def read_pdf(pdf_file): #this is the one change i have done here
# try:
# # Open the PDF file
# with open(pdf_file, 'rb') as file:
# reader = PyPDF2.PdfReader(file)
# pdf_text = ""
# # Extract text from each page
# for page in reader.pages:
# pdf_text += page.extract_text()
# # Assuming vb_list contains tuples of (vb, sp)
# for vb, sp in vb_list:
# # Ensure `data` is defined properly (in this case, it could be the extracted text)
# data = pdf_text
# vb.upsert(data, sp)
# return vb_list
# except Exception as e:
# print(f"Error reading or processing the PDF: {e}")
# return None
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets["HUGGINGFACEHUB_API_TOKEN"]
os.environ["LANGCHAIN_PROJECT"] = st.secrets["LANGCHAIN_PROJECT"]
os.environ["OPENAI_API_KEY"] = st.secrets["GPT_KEY"]
st.session_state['pdf_file'] = []
st.session_state['vb_list'] = []
st.session_state['Settings.embed_model'] = settings()
st.session_state['processor'], st.session_state['vision_model'] = load_nomic_model()
st.session_state['bi_encoder'] = load_bi_encoder()
st.session_state['chat_model'] = load_chat_model()
st.session_state['cross_model'] = load_cross()
st.session_state['q_model'] = load_q_model()
st.session_state['extractor'], st.session_state['image_model'] = load_image_model("google/vit-base-patch16-224-in21k")
st.session_state['pinecone_embed'] = pine_embedding_model()
st.session_state['weaviate_embed'] = weaviate_embedding_model()
st.title('Multi-modal RAG based LLM for Information Retrieval')
st.subheader('Converse with our Chatbot')
st.markdown('Enter a pdf file as a source.')
uploaded_file = st.file_uploader("Choose an pdf document...", type=["pdf"], accept_multiple_files=False)
if uploaded_file is not None:
with open(uploaded_file.name, mode='wb') as w:
w.write(uploaded_file.getvalue())
if not os.path.exists(os.path.join(os.getcwd(), 'pdfs')):
print("i ma here")
os.makedirs(os.path.join(os.getcwd(), 'pdfs'))
shutil.move(uploaded_file.name, os.path.join(os.getcwd(), 'pdfs'))
st.session_state['pdf_file'] = uploaded_file.name
def data_prep(file):
def findWholeWord(w):
return re.compile(r'\b{0}\b'.format(re.escape(w)), flags=re.IGNORECASE).search
file_name = uploaded_file.name
pdf_file_path = os.path.join(os.getcwd(), 'pdfs', file_name)
image_folder = os.path.join(os.getcwd(), f'figures_{file_name}') #name the image folder
if not os.path.exists(image_folder):
os.makedirs(image_folder) #make the image folder if folder is not presnt
print('1. folder made')
with spire.pdf.PdfDocument() as doc:
doc.LoadFromFile(pdf_file_path)
images = []
for page_num in range(doc.Pages.Count):
page = doc.Pages[page_num]
for image_num in range(len(page.ImagesInfo)):
imageFileName = os.path.join(image_folder, f'figure-{page_num}-{image_num}.png') #name the fir page number and image numer on that image
# print(imageFileName)
image = page.ImagesInfo[image_num]
image.Image.Save(imageFileName)
os.chmod(imageFileName, 0o777)
images.append({
"image_file_name": imageFileName,
"image": image
})
return images
file_path = os.path.join('pdfs', uploaded_file.name) # Define the full file path
with open(file_path, mode='wb') as f:
f.write(uploaded_file.getvalue()) # Save the uploaded file to disk
img=data_prep(uploaded_file)
st.session_state['file_path'] = file_path
st.success(f"File uploaded and saved as: {file_path}")
if len(img)>0:
with st.spinner('Extracting'):
vb_list = vector_database_prep(uploaded_file)
st.session_state['vb_list'] = vb_list
st.switch_page('pages/rag.py')
st.experimental_rerun()
else:
st.switch_page('pages/b.py')
# vb_list = read_pdf(uploaded_file) # Corrected to use session state
# st.session_state['vb_list'] = vb_list
# st.write("vb list is implemtnted")
# # Ask the user for a question
# question = st.text_input("Enter your question:", "How are names present in the context?")
# if st.button("Submit Question"):
# # Display the answer to the question
# with st.spinner('Fetching the answer...'):
# # Assuming query is a function that takes the question as input
# answer = req.query(question)
# print(answer)
# st.success(f"Answer: {answer}")
|