bofenghuang commited on
Commit
b66d7e7
β€’
1 Parent(s): 76e0282

Update layout

Browse files
Files changed (4) hide show
  1. .gitignore +2 -0
  2. app.py +1 -1
  3. requirements.txt +1 -1
  4. run_demo_layout.py +313 -0
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ *.wav
2
+ *.mp4
app.py CHANGED
@@ -1 +1 @@
1
- run_demo.py
 
1
+ run_demo_layout.py
requirements.txt CHANGED
@@ -1,4 +1,4 @@
1
- transformers
2
  torch
3
  # torchaudio
4
  librosa
 
1
+ git+https://github.com/huggingface/transformers.git
2
  torch
3
  # torchaudio
4
  librosa
run_demo_layout.py ADDED
@@ -0,0 +1,313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #! /usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2023 Bofeng Huang
4
+
5
+ import datetime
6
+ import logging
7
+ import os
8
+ import re
9
+ import warnings
10
+
11
+ import gradio as gr
12
+ import librosa
13
+
14
+ # import nltk
15
+ import pandas as pd
16
+ import psutil
17
+ import pytube as pt
18
+ import torch
19
+
20
+ # import torchaudio
21
+ from transformers import pipeline, Wav2Vec2ProcessorWithLM, AutoModelForCTC
22
+ from transformers.utils.logging import disable_progress_bar
23
+
24
+ # nltk.download("punkt")
25
+ # from nltk.tokenize import sent_tokenize
26
+
27
+ warnings.filterwarnings("ignore")
28
+ disable_progress_bar()
29
+
30
+ DEFAULT_MODEL_NAME = "bofenghuang/asr-wav2vec2-ctc-french"
31
+ SAMPLE_RATE = 16_000
32
+
33
+ GEN_KWARGS = {
34
+ "chunk_length_s": 30,
35
+ "stride_length_s": 5,
36
+ }
37
+
38
+ logging.basicConfig(
39
+ format="%(asctime)s [%(levelname)s] [%(name)s] %(message)s",
40
+ datefmt="%Y-%m-%dT%H:%M:%SZ",
41
+ )
42
+ logger = logging.getLogger(__name__)
43
+ logger.setLevel(logging.DEBUG)
44
+
45
+ # device = 0 if torch.cuda.is_available() else "cpu"
46
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
47
+ logger.info(f"Model will be loaded on device `{device}`")
48
+
49
+ cached_models = {}
50
+
51
+
52
+ def _return_yt_html_embed(yt_url):
53
+ video_id = yt_url.split("?v=")[-1]
54
+ HTML_str = (
55
+ f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
56
+ " </center>"
57
+ )
58
+ return HTML_str
59
+
60
+
61
+ def download_audio_from_youtube(yt_url, downloaded_filename="audio.wav"):
62
+ yt = pt.YouTube(yt_url)
63
+ stream = yt.streams.filter(only_audio=True)[0]
64
+ # stream.download(filename="audio.mp3")
65
+ stream.download(filename=downloaded_filename)
66
+ return downloaded_filename
67
+
68
+
69
+ def download_video_from_youtube(yt_url, downloaded_filename="video.mp4"):
70
+ yt = pt.YouTube(yt_url)
71
+ stream = yt.streams.filter(progressive=True, file_extension="mp4").order_by("resolution").desc().first()
72
+ stream.download(filename=downloaded_filename)
73
+ logger.info(f"Download YouTube video from {yt_url}")
74
+ return downloaded_filename
75
+
76
+
77
+ def _print_memory_info():
78
+ memory = psutil.virtual_memory()
79
+ logger.info(
80
+ f"Memory info - Free: {memory.available / (1024 ** 3):.2f} Gb, used: {memory.percent}%, total: {memory.total / (1024 ** 3):.2f} Gb"
81
+ )
82
+
83
+
84
+ def _print_cuda_memory_info():
85
+ used_mem, tot_mem = torch.cuda.mem_get_info()
86
+ logger.info(
87
+ f"CUDA memory info - Free: {used_mem / 1024 ** 3:.2f} Gb, used: {(tot_mem - used_mem) / 1024 ** 3:.2f} Gb, total: {tot_mem / 1024 ** 3:.2f} Gb"
88
+ )
89
+
90
+
91
+ def print_memory_info():
92
+ _print_memory_info()
93
+ _print_cuda_memory_info()
94
+
95
+
96
+ def maybe_load_cached_pipeline(model_name):
97
+ model = cached_models.get(model_name)
98
+ if model is None:
99
+ pipe = pipeline(model=model_name, device=device)
100
+
101
+ # model = AutoModelForCTC.from_pretrained(model_name).to(device)
102
+ # processor = Wav2Vec2ProcessorWithLM.from_pretrained(model_name)
103
+ # pipe = pipeline(
104
+ # "automatic-speech-recognition",
105
+ # model=model,
106
+ # tokenizer=processor.tokenizer,
107
+ # feature_extractor=processor.feature_extractor,
108
+ # decoder=processor.decoder,
109
+ # )
110
+
111
+ logger.info(f"`{model_name}` has been loaded on device `{device}`")
112
+
113
+ print_memory_info()
114
+
115
+ cached_models[model_name] = pipe
116
+ return model
117
+
118
+
119
+ def process_audio_file(audio_file):
120
+ # waveform, sample_rate = torchaudio.load(audio_file)
121
+ # waveform = waveform.squeeze(axis=0) # mono
122
+ # # resample
123
+ # if sample_rate != SAMPLE_RATE:
124
+ # resampler = torchaudio.transforms.Resample(sample_rate, SAMPLE_RATE)
125
+ # waveform = resampler(waveform)
126
+
127
+ waveform, sample_rate = librosa.load(audio_file, mono=True)
128
+
129
+ # resample
130
+ if sample_rate != SAMPLE_RATE:
131
+ waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=SAMPLE_RATE)
132
+
133
+ return waveform
134
+
135
+
136
+ def infer(model, filename, return_df=False):
137
+ audio_data = process_audio_file(filename)
138
+
139
+ text = model(audio_data, **GEN_KWARGS)["text"]
140
+
141
+ if return_df:
142
+ # return pd.DataFrame({"text": sent_tokenize(text)})
143
+ return pd.DataFrame({"text": [text]})
144
+ else:
145
+ return text
146
+
147
+
148
+ def transcribe(microphone, file_upload, model_name=DEFAULT_MODEL_NAME):
149
+ warn_output = ""
150
+ if (microphone is not None) and (file_upload is not None):
151
+ warn_output = (
152
+ "WARNING: You've uploaded an audio file and used the microphone. "
153
+ "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
154
+ )
155
+
156
+ elif (microphone is None) and (file_upload is None):
157
+ return "ERROR: You have to either use the microphone or upload an audio file"
158
+
159
+ file = microphone if microphone is not None else file_upload
160
+
161
+ model = maybe_load_cached_pipeline(model_name)
162
+ text = infer(model, file, return_df=True)
163
+
164
+ logger.info(f'Transcription by `{model_name}`:\n{text.to_json(orient="index", force_ascii=False, indent=2)}\n')
165
+
166
+ # return warn_output + text
167
+ return text
168
+
169
+
170
+ def yt_transcribe(yt_url, model_name=DEFAULT_MODEL_NAME):
171
+ # html_embed_str = _return_yt_html_embed(yt_url)
172
+ audio_file_path = download_audio_from_youtube(yt_url)
173
+
174
+ model = maybe_load_cached_pipeline(model_name)
175
+ text = infer(model, audio_file_path, return_df=True)
176
+
177
+ logger.info(
178
+ f'Transcription by `{model_name}` of "{yt_url}":\n{text.to_json(orient="index", force_ascii=False, indent=2)}\n'
179
+ )
180
+
181
+ # return html_embed_str, text
182
+ return text
183
+
184
+
185
+ def video_transcribe(video_file_path, model_name=DEFAULT_MODEL_NAME):
186
+ if video_file_path is None:
187
+ raise ValueError("Failed to transcribe video as no video_file_path has been defined")
188
+
189
+ audio_file_path = re.sub(r"\.mp4$", ".wav", video_file_path)
190
+ os.system(
191
+ f'ffmpeg -hide_banner -loglevel error -y -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file_path}"'
192
+ )
193
+
194
+ model = maybe_load_cached_pipeline(model_name)
195
+ text = infer(model, audio_file_path, return_df=True)
196
+
197
+ logger.info(f'Transcription by `{model_name}`:\n{text.to_json(orient="index", force_ascii=False, indent=2)}\n')
198
+
199
+ return text
200
+
201
+
202
+ # load default model
203
+ maybe_load_cached_pipeline(DEFAULT_MODEL_NAME)
204
+
205
+ # default_text_output_df = pd.DataFrame(columns=["start", "end", "text"])
206
+ default_text_output_df = pd.DataFrame(columns=["text"])
207
+
208
+ with gr.Blocks() as demo:
209
+ with gr.Tab("Transcribe Audio"):
210
+ gr.Markdown(
211
+ f"""
212
+ <div>
213
+ <h1 style='text-align: center'>Speech-to-Text in French: Transcribe Audio</h1>
214
+ </div>
215
+ Transcribe long-form microphone or audio inputs!
216
+
217
+ Demo uses the fine-tuned wav2vec2 model <a href='https://huggingface.co/{DEFAULT_MODEL_NAME}' target='_blank'><b>{DEFAULT_MODEL_NAME}</b></a> and πŸ€— Transformers to transcribe audio files of arbitrary length.
218
+
219
+ To achieve improved accuracy and well-punctuated text, please use the [Whisper demo](https://huggingface.co/spaces/bofenghuang/whisper-demo-french).
220
+ """
221
+ )
222
+
223
+ microphone_input = gr.inputs.Audio(source="microphone", type="filepath", label="Record", optional=True)
224
+ upload_input = gr.inputs.Audio(source="upload", type="filepath", label="Upload File", optional=True)
225
+ # with_timestamps_input = gr.Checkbox(label="With timestamps?")
226
+
227
+ microphone_transcribe_btn = gr.Button("Transcribe Audio")
228
+
229
+ # gr.Markdown('''
230
+ # Here you will get generated transcrit.
231
+ # ''')
232
+
233
+ # microphone_text_output = gr.outputs.Textbox(label="Transcription")
234
+ text_output_df2 = gr.DataFrame(
235
+ value=default_text_output_df,
236
+ label="Transcription",
237
+ row_count=(0, "dynamic"),
238
+ max_rows=10,
239
+ wrap=True,
240
+ overflow_row_behaviour="paginate",
241
+ )
242
+
243
+ microphone_transcribe_btn.click(transcribe, inputs=[microphone_input, upload_input], outputs=text_output_df2)
244
+
245
+ # with gr.Tab("Transcribe YouTube"):
246
+ # gr.Markdown(
247
+ # f"""
248
+ # <div>
249
+ # <h1 style='text-align: center'>Speech-to-Text in French: Transcribe YouTube</h1>
250
+ # </div>
251
+ # Transcribe long-form YouTube videos!
252
+
253
+ # Demo uses the fine-tuned checkpoint: <a href='https://huggingface.co/{DEFAULT_MODEL_NAME}' target='_blank'><b>{DEFAULT_MODEL_NAME}</b></a> to transcribe video files of arbitrary length.
254
+ # """
255
+ # )
256
+
257
+ # yt_link_input2 = gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
258
+ # with_timestamps_input2 = gr.Checkbox(label="With timestamps?", value=True)
259
+
260
+ # yt_transcribe_btn = gr.Button("Transcribe YouTube")
261
+
262
+ # # yt_text_output = gr.outputs.Textbox(label="Transcription")
263
+ # text_output_df3 = gr.DataFrame(
264
+ # value=default_text_output_df,
265
+ # label="Transcription",
266
+ # row_count=(0, "dynamic"),
267
+ # max_rows=10,
268
+ # wrap=True,
269
+ # overflow_row_behaviour="paginate",
270
+ # )
271
+ # # yt_html_output = gr.outputs.HTML(label="YouTube Page")
272
+
273
+ # yt_transcribe_btn.click(yt_transcribe, inputs=[yt_link_input2, with_timestamps_input2], outputs=[text_output_df3])
274
+
275
+ with gr.Tab("Transcribe Video"):
276
+ gr.Markdown(
277
+ f"""
278
+ <div>
279
+ <h1 style='text-align: center'>Speech-to-Text in French: Transcribe Video</h1>
280
+ </div>
281
+ Transcribe long-form YouTube videos or uploaded video inputs!
282
+
283
+ Demo uses the fine-tuned wav2vec2 model <a href='https://huggingface.co/{DEFAULT_MODEL_NAME}' target='_blank'><b>{DEFAULT_MODEL_NAME}</b></a> and πŸ€— Transformers to transcribe audio files of arbitrary length.
284
+
285
+ To achieve improved accuracy and well-punctuated text, please use the [Whisper demo](https://huggingface.co/spaces/bofenghuang/whisper-demo-french).
286
+ """
287
+ )
288
+
289
+ yt_link_input = gr.inputs.Textbox(
290
+ lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"
291
+ )
292
+ download_youtube_btn = gr.Button("Download Youtube video")
293
+ downloaded_video_output = gr.Video(label="Video file", mirror_webcam=False)
294
+ download_youtube_btn.click(
295
+ download_video_from_youtube, inputs=[yt_link_input], outputs=[downloaded_video_output]
296
+ )
297
+
298
+ # with_timestamps_input3 = gr.Checkbox(label="With timestamps?", value=True)
299
+ video_transcribe_btn = gr.Button("Transcribe video")
300
+ text_output_df = gr.DataFrame(
301
+ value=default_text_output_df,
302
+ label="Transcription",
303
+ row_count=(0, "dynamic"),
304
+ max_rows=10,
305
+ wrap=True,
306
+ overflow_row_behaviour="paginate",
307
+ )
308
+
309
+ video_transcribe_btn.click(video_transcribe, inputs=[downloaded_video_output], outputs=[text_output_df])
310
+
311
+ demo.launch(server_name="0.0.0.0", debug=True)
312
+ # demo.launch(server_name="0.0.0.0", debug=True, share=True)
313
+ # demo.launch(enable_queue=True)