import gradio as gr # Import the pipeline from transformers import pipeline # Define the pipeline # Note: This pipeline is hosted on the Hugging Face model hub # https://huggingface.co./Helsinki-NLP/opus-mt-en-he # You can replace this with any other translation pipeline # https://huggingface.co./models?filter=translation pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-he") # Define a pipeline for reverse translation # Note: This pipeline is hosted on the Hugging Face model hub # https://huggingface.co./Helsinki-NLP/opus-mt-he-en # You can replace this with any other translation pipeline # https://huggingface.co./models?filter=translation pipe_reverse = pipeline("translation", model="Helsinki-NLP/opus-mt-he-en") # Define the function def predict(text): # Return the translation return pipe(text)[0]["translation_text"] def predict_reverse(text): # Return the translation return pipe_reverse(text)[0]["translation_text"] # Define the interface iface = gr.Interface( fn=predict, fn_reverse=predict_reverse, inputs='text', outputs='text', title="English to Hebrew Translator", description="Translate English to Hebrew", examples=[["Hello! My name is Bob."], ["I like to eat apples and banana"]] ) # Launch the interface iface.launch()