Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import os | |
from stablepy import ( | |
Model_Diffusers, | |
SCHEDULE_TYPE_OPTIONS, | |
SCHEDULE_PREDICTION_TYPE_OPTIONS, | |
check_scheduler_compatibility, | |
TASK_AND_PREPROCESSORS, | |
FACE_RESTORATION_MODELS, | |
scheduler_names, | |
) | |
from constants import ( | |
DIRECTORY_MODELS, | |
DIRECTORY_LORAS, | |
DIRECTORY_VAES, | |
DIRECTORY_EMBEDS, | |
DIRECTORY_UPSCALERS, | |
DOWNLOAD_MODEL, | |
DOWNLOAD_VAE, | |
DOWNLOAD_LORA, | |
LOAD_DIFFUSERS_FORMAT_MODEL, | |
DIFFUSERS_FORMAT_LORAS, | |
DOWNLOAD_EMBEDS, | |
CIVITAI_API_KEY, | |
HF_TOKEN, | |
TASK_STABLEPY, | |
TASK_MODEL_LIST, | |
UPSCALER_DICT_GUI, | |
UPSCALER_KEYS, | |
PROMPT_W_OPTIONS, | |
WARNING_MSG_VAE, | |
SDXL_TASK, | |
MODEL_TYPE_TASK, | |
POST_PROCESSING_SAMPLER, | |
SUBTITLE_GUI, | |
HELP_GUI, | |
EXAMPLES_GUI_HELP, | |
EXAMPLES_GUI, | |
RESOURCES, | |
DIFFUSERS_CONTROLNET_MODEL, | |
IP_MODELS, | |
MODE_IP_OPTIONS, | |
) | |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES | |
import torch | |
import re | |
import time | |
from PIL import ImageFile | |
from utils import ( | |
download_things, | |
get_model_list, | |
extract_parameters, | |
get_my_lora, | |
get_model_type, | |
extract_exif_data, | |
create_mask_now, | |
download_diffuser_repo, | |
get_used_storage_gb, | |
delete_model, | |
progress_step_bar, | |
html_template_message, | |
escape_html, | |
) | |
from image_processor import preprocessor_tab | |
from datetime import datetime | |
import gradio as gr | |
import logging | |
import diffusers | |
import warnings | |
from stablepy import logger | |
from diffusers import FluxPipeline | |
# import urllib.parse | |
import subprocess | |
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True) | |
ImageFile.LOAD_TRUNCATED_IMAGES = True | |
torch.backends.cuda.matmul.allow_tf32 = True | |
# os.environ["PYTORCH_NO_CUDA_MEMORY_CACHING"] = "1" | |
print(os.getenv("SPACES_ZERO_GPU")) | |
directories = [DIRECTORY_MODELS, DIRECTORY_LORAS, DIRECTORY_VAES, DIRECTORY_EMBEDS, DIRECTORY_UPSCALERS] | |
for directory in directories: | |
os.makedirs(directory, exist_ok=True) | |
# Download stuffs | |
for url in [url.strip() for url in DOWNLOAD_MODEL.split(',')]: | |
if not os.path.exists(f"./models/{url.split('/')[-1]}"): | |
download_things(DIRECTORY_MODELS, url, HF_TOKEN, CIVITAI_API_KEY) | |
for url in [url.strip() for url in DOWNLOAD_VAE.split(',')]: | |
if not os.path.exists(f"./vaes/{url.split('/')[-1]}"): | |
download_things(DIRECTORY_VAES, url, HF_TOKEN, CIVITAI_API_KEY) | |
for url in [url.strip() for url in DOWNLOAD_LORA.split(',')]: | |
if not os.path.exists(f"./loras/{url.split('/')[-1]}"): | |
download_things(DIRECTORY_LORAS, url, HF_TOKEN, CIVITAI_API_KEY) | |
# Download Embeddings | |
for url_embed in DOWNLOAD_EMBEDS: | |
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"): | |
download_things(DIRECTORY_EMBEDS, url_embed, HF_TOKEN, CIVITAI_API_KEY) | |
# Build list models | |
embed_list = get_model_list(DIRECTORY_EMBEDS) | |
embed_list = [ | |
(os.path.splitext(os.path.basename(emb))[0], emb) for emb in embed_list | |
] | |
single_file_model_list = get_model_list(DIRECTORY_MODELS) | |
model_list = LOAD_DIFFUSERS_FORMAT_MODEL + single_file_model_list | |
lora_model_list = get_model_list(DIRECTORY_LORAS) | |
lora_model_list.insert(0, "None") | |
lora_model_list = lora_model_list + DIFFUSERS_FORMAT_LORAS | |
vae_model_list = get_model_list(DIRECTORY_VAES) | |
vae_model_list.insert(0, "BakedVAE") | |
vae_model_list.insert(0, "None") | |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m') | |
flux_repo = "camenduru/FLUX.1-dev-diffusers" | |
flux_pipe = FluxPipeline.from_pretrained( | |
flux_repo, | |
transformer=None, | |
torch_dtype=torch.bfloat16, | |
).to("cuda") | |
components = flux_pipe.components | |
delete_model(flux_repo) | |
# components = None | |
####################### | |
# GUI | |
####################### | |
logging.getLogger("diffusers").setLevel(logging.ERROR) | |
diffusers.utils.logging.set_verbosity(40) | |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers") | |
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers") | |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers") | |
logger.setLevel(logging.DEBUG) | |
CSS = """ | |
.contain { display: flex; flex-direction: column; } | |
#component-0 { height: 100%; } | |
#gallery { flex-grow: 1; } | |
#load_model { height: 50px; } | |
""" | |
class GuiSD: | |
def __init__(self, stream=True): | |
self.model = None | |
self.status_loading = False | |
self.sleep_loading = 4 | |
self.last_load = datetime.now() | |
self.inventory = [] | |
def update_storage_models(self, storage_floor_gb=24, required_inventory_for_purge=3): | |
while get_used_storage_gb() > storage_floor_gb: | |
if len(self.inventory) < required_inventory_for_purge: | |
break | |
removal_candidate = self.inventory.pop(0) | |
delete_model(removal_candidate) | |
def update_inventory(self, model_name): | |
if model_name not in single_file_model_list: | |
self.inventory = [ | |
m for m in self.inventory if m != model_name | |
] + [model_name] | |
print(self.inventory) | |
def load_new_model(self, model_name, vae_model, task, controlnet_model, progress=gr.Progress(track_tqdm=True)): | |
# download link model > model_name | |
self.update_storage_models() | |
vae_model = vae_model if vae_model != "None" else None | |
model_type = get_model_type(model_name) | |
dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16 | |
if not os.path.exists(model_name): | |
_ = download_diffuser_repo( | |
repo_name=model_name, | |
model_type=model_type, | |
revision="main", | |
token=True, | |
) | |
self.update_inventory(model_name) | |
for i in range(68): | |
if not self.status_loading: | |
self.status_loading = True | |
if i > 0: | |
time.sleep(self.sleep_loading) | |
print("Previous model ops...") | |
break | |
time.sleep(0.5) | |
print(f"Waiting queue {i}") | |
yield "Waiting queue" | |
self.status_loading = True | |
yield f"Loading model: {model_name}" | |
if vae_model == "BakedVAE": | |
vae_model = model_name | |
elif vae_model: | |
vae_type = "SDXL" if "sdxl" in vae_model.lower() else "SD 1.5" | |
if model_type != vae_type: | |
gr.Warning(WARNING_MSG_VAE) | |
print("Loading model...") | |
try: | |
start_time = time.time() | |
if self.model is None: | |
self.model = Model_Diffusers( | |
base_model_id=model_name, | |
task_name=TASK_STABLEPY[task], | |
vae_model=vae_model, | |
type_model_precision=dtype_model, | |
retain_task_model_in_cache=False, | |
controlnet_model=controlnet_model, | |
device="cpu", | |
env_components=components, | |
) | |
self.model.advanced_params(image_preprocessor_cuda_active=True) | |
else: | |
if self.model.base_model_id != model_name: | |
load_now_time = datetime.now() | |
elapsed_time = max((load_now_time - self.last_load).total_seconds(), 0) | |
if elapsed_time <= 9: | |
print("Waiting for the previous model's time ops...") | |
time.sleep(9 - elapsed_time) | |
self.model.device = torch.device("cpu") | |
self.model.load_pipe( | |
model_name, | |
task_name=TASK_STABLEPY[task], | |
vae_model=vae_model, | |
type_model_precision=dtype_model, | |
retain_task_model_in_cache=False, | |
controlnet_model=controlnet_model, | |
) | |
end_time = time.time() | |
self.sleep_loading = max(min(int(end_time - start_time), 10), 4) | |
except Exception as e: | |
self.last_load = datetime.now() | |
self.status_loading = False | |
self.sleep_loading = 4 | |
raise e | |
self.last_load = datetime.now() | |
self.status_loading = False | |
yield f"Model loaded: {model_name}" | |
# @spaces.GPU(duration=59) | |
def generate_pipeline( | |
self, | |
prompt, | |
neg_prompt, | |
num_images, | |
steps, | |
cfg, | |
clip_skip, | |
seed, | |
lora1, | |
lora_scale1, | |
lora2, | |
lora_scale2, | |
lora3, | |
lora_scale3, | |
lora4, | |
lora_scale4, | |
lora5, | |
lora_scale5, | |
lora6, | |
lora_scale6, | |
lora7, | |
lora_scale7, | |
sampler, | |
schedule_type, | |
schedule_prediction_type, | |
img_height, | |
img_width, | |
model_name, | |
vae_model, | |
task, | |
image_control, | |
preprocessor_name, | |
preprocess_resolution, | |
image_resolution, | |
style_prompt, # list [] | |
style_json_file, | |
image_mask, | |
strength, | |
low_threshold, | |
high_threshold, | |
value_threshold, | |
distance_threshold, | |
recolor_gamma_correction, | |
tile_blur_sigma, | |
controlnet_output_scaling_in_unet, | |
controlnet_start_threshold, | |
controlnet_stop_threshold, | |
textual_inversion, | |
syntax_weights, | |
upscaler_model_path, | |
upscaler_increases_size, | |
upscaler_tile_size, | |
upscaler_tile_overlap, | |
hires_steps, | |
hires_denoising_strength, | |
hires_sampler, | |
hires_prompt, | |
hires_negative_prompt, | |
hires_before_adetailer, | |
hires_after_adetailer, | |
hires_schedule_type, | |
hires_guidance_scale, | |
controlnet_model, | |
loop_generation, | |
leave_progress_bar, | |
disable_progress_bar, | |
image_previews, | |
display_images, | |
save_generated_images, | |
filename_pattern, | |
image_storage_location, | |
retain_compel_previous_load, | |
retain_detailfix_model_previous_load, | |
retain_hires_model_previous_load, | |
t2i_adapter_preprocessor, | |
t2i_adapter_conditioning_scale, | |
t2i_adapter_conditioning_factor, | |
xformers_memory_efficient_attention, | |
freeu, | |
generator_in_cpu, | |
adetailer_inpaint_only, | |
adetailer_verbose, | |
adetailer_sampler, | |
adetailer_active_a, | |
prompt_ad_a, | |
negative_prompt_ad_a, | |
strength_ad_a, | |
face_detector_ad_a, | |
person_detector_ad_a, | |
hand_detector_ad_a, | |
mask_dilation_a, | |
mask_blur_a, | |
mask_padding_a, | |
adetailer_active_b, | |
prompt_ad_b, | |
negative_prompt_ad_b, | |
strength_ad_b, | |
face_detector_ad_b, | |
person_detector_ad_b, | |
hand_detector_ad_b, | |
mask_dilation_b, | |
mask_blur_b, | |
mask_padding_b, | |
retain_task_cache_gui, | |
guidance_rescale, | |
image_ip1, | |
mask_ip1, | |
model_ip1, | |
mode_ip1, | |
scale_ip1, | |
image_ip2, | |
mask_ip2, | |
model_ip2, | |
mode_ip2, | |
scale_ip2, | |
pag_scale, | |
face_restoration_model, | |
face_restoration_visibility, | |
face_restoration_weight, | |
): | |
info_state = html_template_message("Navigating latent space...") | |
yield info_state, gr.update(), gr.update() | |
vae_model = vae_model if vae_model != "None" else None | |
loras_list = [lora1, lora2, lora3, lora4, lora5, lora6, lora7] | |
vae_msg = f"VAE: {vae_model}" if vae_model else "" | |
msg_lora = "" | |
print("Config model:", model_name, vae_model, loras_list) | |
task = TASK_STABLEPY[task] | |
params_ip_img = [] | |
params_ip_msk = [] | |
params_ip_model = [] | |
params_ip_mode = [] | |
params_ip_scale = [] | |
all_adapters = [ | |
(image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1), | |
(image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2), | |
] | |
if not hasattr(self.model.pipe, "transformer"): | |
for imgip, mskip, modelip, modeip, scaleip in all_adapters: | |
if imgip: | |
params_ip_img.append(imgip) | |
if mskip: | |
params_ip_msk.append(mskip) | |
params_ip_model.append(modelip) | |
params_ip_mode.append(modeip) | |
params_ip_scale.append(scaleip) | |
concurrency = 5 | |
self.model.stream_config(concurrency=concurrency, latent_resize_by=1, vae_decoding=False) | |
if task != "txt2img" and not image_control: | |
raise ValueError("Reference image is required. Please upload one in 'Image ControlNet/Inpaint/Img2img'.") | |
if task in ["inpaint", "repaint"] and not image_mask: | |
raise ValueError("Mask image not found. Upload one in 'Image Mask' to proceed.") | |
if "https://" not in str(UPSCALER_DICT_GUI[upscaler_model_path]): | |
upscaler_model = upscaler_model_path | |
else: | |
url_upscaler = UPSCALER_DICT_GUI[upscaler_model_path] | |
if not os.path.exists(f"./{DIRECTORY_UPSCALERS}/{url_upscaler.split('/')[-1]}"): | |
download_things(DIRECTORY_UPSCALERS, url_upscaler, HF_TOKEN) | |
upscaler_model = f"./{DIRECTORY_UPSCALERS}/{url_upscaler.split('/')[-1]}" | |
logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR) | |
adetailer_params_A = { | |
"face_detector_ad": face_detector_ad_a, | |
"person_detector_ad": person_detector_ad_a, | |
"hand_detector_ad": hand_detector_ad_a, | |
"prompt": prompt_ad_a, | |
"negative_prompt": negative_prompt_ad_a, | |
"strength": strength_ad_a, | |
# "image_list_task" : None, | |
"mask_dilation": mask_dilation_a, | |
"mask_blur": mask_blur_a, | |
"mask_padding": mask_padding_a, | |
"inpaint_only": adetailer_inpaint_only, | |
"sampler": adetailer_sampler, | |
} | |
adetailer_params_B = { | |
"face_detector_ad": face_detector_ad_b, | |
"person_detector_ad": person_detector_ad_b, | |
"hand_detector_ad": hand_detector_ad_b, | |
"prompt": prompt_ad_b, | |
"negative_prompt": negative_prompt_ad_b, | |
"strength": strength_ad_b, | |
# "image_list_task" : None, | |
"mask_dilation": mask_dilation_b, | |
"mask_blur": mask_blur_b, | |
"mask_padding": mask_padding_b, | |
} | |
pipe_params = { | |
"prompt": prompt, | |
"negative_prompt": neg_prompt, | |
"img_height": img_height, | |
"img_width": img_width, | |
"num_images": num_images, | |
"num_steps": steps, | |
"guidance_scale": cfg, | |
"clip_skip": clip_skip, | |
"pag_scale": float(pag_scale), | |
"seed": seed, | |
"image": image_control, | |
"preprocessor_name": preprocessor_name, | |
"preprocess_resolution": preprocess_resolution, | |
"image_resolution": image_resolution, | |
"style_prompt": style_prompt if style_prompt else "", | |
"style_json_file": "", | |
"image_mask": image_mask, # only for Inpaint | |
"strength": strength, # only for Inpaint or ... | |
"low_threshold": low_threshold, | |
"high_threshold": high_threshold, | |
"value_threshold": value_threshold, | |
"distance_threshold": distance_threshold, | |
"recolor_gamma_correction": float(recolor_gamma_correction), | |
"tile_blur_sigma": int(tile_blur_sigma), | |
"lora_A": lora1 if lora1 != "None" else None, | |
"lora_scale_A": lora_scale1, | |
"lora_B": lora2 if lora2 != "None" else None, | |
"lora_scale_B": lora_scale2, | |
"lora_C": lora3 if lora3 != "None" else None, | |
"lora_scale_C": lora_scale3, | |
"lora_D": lora4 if lora4 != "None" else None, | |
"lora_scale_D": lora_scale4, | |
"lora_E": lora5 if lora5 != "None" else None, | |
"lora_scale_E": lora_scale5, | |
"lora_F": lora6 if lora6 != "None" else None, | |
"lora_scale_F": lora_scale6, | |
"lora_G": lora7 if lora7 != "None" else None, | |
"lora_scale_G": lora_scale7, | |
"textual_inversion": embed_list if textual_inversion else [], | |
"syntax_weights": syntax_weights, # "Classic" | |
"sampler": sampler, | |
"schedule_type": schedule_type, | |
"schedule_prediction_type": schedule_prediction_type, | |
"xformers_memory_efficient_attention": xformers_memory_efficient_attention, | |
"gui_active": True, | |
"loop_generation": loop_generation, | |
"controlnet_conditioning_scale": float(controlnet_output_scaling_in_unet), | |
"control_guidance_start": float(controlnet_start_threshold), | |
"control_guidance_end": float(controlnet_stop_threshold), | |
"generator_in_cpu": generator_in_cpu, | |
"FreeU": freeu, | |
"adetailer_A": adetailer_active_a, | |
"adetailer_A_params": adetailer_params_A, | |
"adetailer_B": adetailer_active_b, | |
"adetailer_B_params": adetailer_params_B, | |
"leave_progress_bar": leave_progress_bar, | |
"disable_progress_bar": disable_progress_bar, | |
"image_previews": image_previews, | |
"display_images": display_images, | |
"save_generated_images": save_generated_images, | |
"filename_pattern": filename_pattern, | |
"image_storage_location": image_storage_location, | |
"retain_compel_previous_load": retain_compel_previous_load, | |
"retain_detailfix_model_previous_load": retain_detailfix_model_previous_load, | |
"retain_hires_model_previous_load": retain_hires_model_previous_load, | |
"t2i_adapter_preprocessor": t2i_adapter_preprocessor, | |
"t2i_adapter_conditioning_scale": float(t2i_adapter_conditioning_scale), | |
"t2i_adapter_conditioning_factor": float(t2i_adapter_conditioning_factor), | |
"upscaler_model_path": upscaler_model, | |
"upscaler_increases_size": upscaler_increases_size, | |
"upscaler_tile_size": upscaler_tile_size, | |
"upscaler_tile_overlap": upscaler_tile_overlap, | |
"hires_steps": hires_steps, | |
"hires_denoising_strength": hires_denoising_strength, | |
"hires_prompt": hires_prompt, | |
"hires_negative_prompt": hires_negative_prompt, | |
"hires_sampler": hires_sampler, | |
"hires_before_adetailer": hires_before_adetailer, | |
"hires_after_adetailer": hires_after_adetailer, | |
"hires_schedule_type": hires_schedule_type, | |
"hires_guidance_scale": hires_guidance_scale, | |
"ip_adapter_image": params_ip_img, | |
"ip_adapter_mask": params_ip_msk, | |
"ip_adapter_model": params_ip_model, | |
"ip_adapter_mode": params_ip_mode, | |
"ip_adapter_scale": params_ip_scale, | |
"face_restoration_model": face_restoration_model, | |
"face_restoration_visibility": face_restoration_visibility, | |
"face_restoration_weight": face_restoration_weight, | |
} | |
# kwargs for diffusers pipeline | |
if guidance_rescale: | |
pipe_params["guidance_rescale"] = guidance_rescale | |
self.model.device = torch.device("cuda:0") | |
if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] * self.model.num_loras: | |
self.model.pipe.transformer.to(self.model.device) | |
print("transformer to cuda") | |
actual_progress = 0 | |
info_images = gr.update() | |
for img, [seed, image_path, metadata] in self.model(**pipe_params): | |
info_state = progress_step_bar(actual_progress, steps) | |
actual_progress += concurrency | |
if image_path: | |
info_images = f"Seeds: {str(seed)}" | |
if vae_msg: | |
info_images = info_images + "<br>" + vae_msg | |
if "Cannot copy out of meta tensor; no data!" in self.model.last_lora_error: | |
msg_ram = "Unable to process the LoRAs due to high RAM usage; please try again later." | |
print(msg_ram) | |
msg_lora += f"<br>{msg_ram}" | |
for status, lora in zip(self.model.lora_status, self.model.lora_memory): | |
if status: | |
msg_lora += f"<br>Loaded: {lora}" | |
elif status is not None: | |
msg_lora += f"<br>Error with: {lora}" | |
if msg_lora: | |
info_images += msg_lora | |
info_images = info_images + "<br>" + "GENERATION DATA:<br>" + escape_html(metadata[-1]) + "<br>-------<br>" | |
download_links = "<br>".join( | |
[ | |
f'<a href="{path.replace("/images/", "/file=/home/user/app/images/")}" download="{os.path.basename(path)}">Download Image {i + 1}</a>' | |
for i, path in enumerate(image_path) | |
] | |
) | |
if save_generated_images: | |
info_images += f"<br>{download_links}" | |
info_state = "COMPLETE" | |
yield info_state, img, info_images | |
def dynamic_gpu_duration(func, duration, *args): | |
# @torch.inference_mode() | |
def wrapped_func(): | |
yield from func(*args) | |
return wrapped_func() | |
def dummy_gpu(): | |
return None | |
def sd_gen_generate_pipeline(*args): | |
gpu_duration_arg = int(args[-1]) if args[-1] else 59 | |
verbose_arg = int(args[-2]) | |
load_lora_cpu = args[-3] | |
generation_args = args[:-3] | |
lora_list = [ | |
None if item == "None" else item | |
for item in [args[7], args[9], args[11], args[13], args[15], args[17], args[19]] | |
] | |
lora_status = [None] * sd_gen.model.num_loras | |
msg_load_lora = "Updating LoRAs in GPU..." | |
if load_lora_cpu: | |
msg_load_lora = "Updating LoRAs in CPU..." | |
if lora_list != sd_gen.model.lora_memory and lora_list != [None] * sd_gen.model.num_loras: | |
yield msg_load_lora, gr.update(), gr.update() | |
# Load lora in CPU | |
if load_lora_cpu: | |
lora_status = sd_gen.model.load_lora_on_the_fly( | |
lora_A=lora_list[0], lora_scale_A=args[8], | |
lora_B=lora_list[1], lora_scale_B=args[10], | |
lora_C=lora_list[2], lora_scale_C=args[12], | |
lora_D=lora_list[3], lora_scale_D=args[14], | |
lora_E=lora_list[4], lora_scale_E=args[16], | |
lora_F=lora_list[5], lora_scale_F=args[18], | |
lora_G=lora_list[6], lora_scale_G=args[20], | |
) | |
print(lora_status) | |
sampler_name = args[21] | |
schedule_type_name = args[22] | |
_, _, msg_sampler = check_scheduler_compatibility( | |
sd_gen.model.class_name, sampler_name, schedule_type_name | |
) | |
if msg_sampler: | |
gr.Warning(msg_sampler) | |
if verbose_arg: | |
for status, lora in zip(lora_status, lora_list): | |
if status: | |
gr.Info(f"LoRA loaded in CPU: {lora}") | |
elif status is not None: | |
gr.Warning(f"Failed to load LoRA: {lora}") | |
if lora_status == [None] * sd_gen.model.num_loras and sd_gen.model.lora_memory != [None] * sd_gen.model.num_loras and load_lora_cpu: | |
lora_cache_msg = ", ".join( | |
str(x) for x in sd_gen.model.lora_memory if x is not None | |
) | |
gr.Info(f"LoRAs in cache: {lora_cache_msg}") | |
msg_request = f"Requesting {gpu_duration_arg}s. of GPU time.\nModel: {sd_gen.model.base_model_id}" | |
if verbose_arg: | |
gr.Info(msg_request) | |
print(msg_request) | |
yield msg_request.replace("\n", "<br>"), gr.update(), gr.update() | |
start_time = time.time() | |
# yield from sd_gen.generate_pipeline(*generation_args) | |
yield from dynamic_gpu_duration( | |
sd_gen.generate_pipeline, | |
gpu_duration_arg, | |
*generation_args, | |
) | |
end_time = time.time() | |
execution_time = end_time - start_time | |
msg_task_complete = ( | |
f"GPU task complete in: {int(round(execution_time, 0) + 1)} seconds" | |
) | |
if verbose_arg: | |
gr.Info(msg_task_complete) | |
print(msg_task_complete) | |
yield msg_task_complete, gr.update(), gr.update() | |
def process_upscale(image, upscaler_name, upscaler_size): | |
if image is None: return None | |
from stablepy.diffusers_vanilla.utils import save_pil_image_with_metadata | |
from stablepy import load_upscaler_model | |
image = image.convert("RGB") | |
exif_image = extract_exif_data(image) | |
name_upscaler = UPSCALER_DICT_GUI[upscaler_name] | |
if "https://" in str(name_upscaler): | |
if not os.path.exists(f"./{DIRECTORY_UPSCALERS}/{name_upscaler.split('/')[-1]}"): | |
download_things(DIRECTORY_UPSCALERS, name_upscaler, HF_TOKEN) | |
name_upscaler = f"./{DIRECTORY_UPSCALERS}/{name_upscaler.split('/')[-1]}" | |
scaler_beta = load_upscaler_model(model=name_upscaler, tile=0, tile_overlap=8, device="cuda", half=True) | |
image_up = scaler_beta.upscale(image, upscaler_size, True) | |
image_path = save_pil_image_with_metadata(image_up, f'{os.getcwd()}/up_images', exif_image) | |
return image_path | |
# https://huggingface.co./spaces/BestWishYsh/ConsisID-preview-Space/discussions/1#674969a022b99c122af5d407 | |
dynamic_gpu_duration.zerogpu = True | |
sd_gen_generate_pipeline.zerogpu = True | |
sd_gen = GuiSD() | |
with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app: | |
gr.Markdown("# 🧩 DiffuseCraft") | |
gr.Markdown(SUBTITLE_GUI) | |
with gr.Tab("Generation"): | |
with gr.Row(): | |
with gr.Column(scale=2): | |
def update_task_options(model_name, task_name): | |
new_choices = MODEL_TYPE_TASK[get_model_type(model_name)] | |
if task_name not in new_choices: | |
task_name = "txt2img" | |
return gr.update(value=task_name, choices=new_choices) | |
task_gui = gr.Dropdown(label="Task", choices=SDXL_TASK, value=TASK_MODEL_LIST[0]) | |
model_name_gui = gr.Dropdown(label="Model", choices=model_list, value=model_list[0], allow_custom_value=True) | |
prompt_gui = gr.Textbox(lines=5, placeholder="Enter prompt", label="Prompt") | |
neg_prompt_gui = gr.Textbox(lines=3, placeholder="Enter Neg prompt", label="Negative prompt", value="lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, worst quality, low quality, very displeasing, (bad)") | |
with gr.Row(equal_height=False): | |
set_params_gui = gr.Button(value="↙️", variant="secondary", size="sm") | |
clear_prompt_gui = gr.Button(value="🗑️", variant="secondary", size="sm") | |
set_random_seed = gr.Button(value="🎲", variant="secondary", size="sm") | |
generate_button = gr.Button(value="GENERATE IMAGE", variant="primary") | |
model_name_gui.change( | |
update_task_options, | |
[model_name_gui, task_gui], | |
[task_gui], | |
) | |
load_model_gui = gr.HTML(elem_id="load_model", elem_classes="contain") | |
result_images = gr.Gallery( | |
label="Generated images", | |
show_label=False, | |
elem_id="gallery", | |
columns=[2], | |
rows=[2], | |
object_fit="contain", | |
# height="auto", | |
interactive=False, | |
preview=False, | |
selected_index=50, | |
) | |
actual_task_info = gr.HTML() | |
with gr.Row(equal_height=False, variant="default"): | |
gpu_duration_gui = gr.Number(minimum=5, maximum=240, value=59, show_label=False, container=False, info="GPU time duration (seconds)") | |
with gr.Column(): | |
verbose_info_gui = gr.Checkbox(value=False, container=False, label="Status info") | |
load_lora_cpu_gui = gr.Checkbox(value=False, container=False, label="Load LoRAs on CPU") | |
with gr.Column(scale=1): | |
steps_gui = gr.Slider(minimum=1, maximum=100, step=1, value=28, label="Steps") | |
cfg_gui = gr.Slider(minimum=0, maximum=30, step=0.5, value=7., label="CFG") | |
sampler_gui = gr.Dropdown(label="Sampler", choices=scheduler_names, value="Euler") | |
schedule_type_gui = gr.Dropdown(label="Schedule type", choices=SCHEDULE_TYPE_OPTIONS, value=SCHEDULE_TYPE_OPTIONS[0]) | |
img_width_gui = gr.Slider(minimum=64, maximum=4096, step=8, value=832, label="Img Width") | |
img_height_gui = gr.Slider(minimum=64, maximum=4096, step=8, value=1216, label="Img Height") | |
seed_gui = gr.Number(minimum=-1, maximum=99999999999999999, value=-1, label="Seed") | |
pag_scale_gui = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=0.0, label="PAG Scale") | |
with gr.Row(): | |
clip_skip_gui = gr.Checkbox(value=True, label="Layer 2 Clip Skip") | |
free_u_gui = gr.Checkbox(value=False, label="FreeU") | |
with gr.Row(equal_height=False): | |
def run_set_params_gui(base_prompt, name_model): | |
valid_receptors = { # default values | |
"prompt": gr.update(value=base_prompt), | |
"neg_prompt": gr.update(value=""), | |
"Steps": gr.update(value=30), | |
"width": gr.update(value=1024), | |
"height": gr.update(value=1024), | |
"Seed": gr.update(value=-1), | |
"Sampler": gr.update(value="Euler"), | |
"CFG scale": gr.update(value=7.), # cfg | |
"Clip skip": gr.update(value=True), | |
"Model": gr.update(value=name_model), | |
"Schedule type": gr.update(value="Automatic"), | |
"PAG": gr.update(value=.0), | |
"FreeU": gr.update(value=False), | |
} | |
valid_keys = list(valid_receptors.keys()) | |
parameters = extract_parameters(base_prompt) | |
# print(parameters) | |
if "Sampler" in parameters: | |
value_sampler = parameters["Sampler"] | |
for s_type in SCHEDULE_TYPE_OPTIONS: | |
if s_type in value_sampler: | |
value_sampler = value_sampler.replace(s_type, "").strip() | |
parameters["Sampler"] = value_sampler | |
parameters["Schedule type"] = s_type | |
for key, val in parameters.items(): | |
# print(val) | |
if key in valid_keys: | |
try: | |
if key == "Sampler": | |
if val not in scheduler_names: | |
continue | |
if key == "Schedule type": | |
if val not in SCHEDULE_TYPE_OPTIONS: | |
val = "Automatic" | |
elif key == "Clip skip": | |
if "," in str(val): | |
val = val.replace(",", "") | |
if int(val) >= 2: | |
val = True | |
if key == "prompt": | |
if ">" in val and "<" in val: | |
val = re.sub(r'<[^>]+>', '', val) | |
print("Removed LoRA written in the prompt") | |
if key in ["prompt", "neg_prompt"]: | |
val = re.sub(r'\s+', ' ', re.sub(r',+', ',', val)).strip() | |
if key in ["Steps", "width", "height", "Seed"]: | |
val = int(val) | |
if key == "FreeU": | |
val = True | |
if key in ["CFG scale", "PAG"]: | |
val = float(val) | |
if key == "Model": | |
filtered_models = [m for m in model_list if val in m] | |
if filtered_models: | |
val = filtered_models[0] | |
else: | |
val = name_model | |
if key == "Seed": | |
continue | |
valid_receptors[key] = gr.update(value=val) | |
# print(val, type(val)) | |
# print(valid_receptors) | |
except Exception as e: | |
print(str(e)) | |
return [value for value in valid_receptors.values()] | |
set_params_gui.click( | |
run_set_params_gui, [prompt_gui, model_name_gui], [ | |
prompt_gui, | |
neg_prompt_gui, | |
steps_gui, | |
img_width_gui, | |
img_height_gui, | |
seed_gui, | |
sampler_gui, | |
cfg_gui, | |
clip_skip_gui, | |
model_name_gui, | |
schedule_type_gui, | |
pag_scale_gui, | |
free_u_gui, | |
], | |
) | |
def run_clear_prompt_gui(): | |
return gr.update(value=""), gr.update(value="") | |
clear_prompt_gui.click( | |
run_clear_prompt_gui, [], [prompt_gui, neg_prompt_gui] | |
) | |
def run_set_random_seed(): | |
return -1 | |
set_random_seed.click( | |
run_set_random_seed, [], seed_gui | |
) | |
num_images_gui = gr.Slider(minimum=1, maximum=8, step=1, value=1, label="Images") | |
prompt_syntax_gui = gr.Dropdown(label="Prompt Syntax", choices=PROMPT_W_OPTIONS, value=PROMPT_W_OPTIONS[1][1]) | |
vae_model_gui = gr.Dropdown(label="VAE Model", choices=vae_model_list, value=vae_model_list[0]) | |
with gr.Accordion("Hires fix", open=False, visible=True): | |
upscaler_model_path_gui = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS, value=UPSCALER_KEYS[0]) | |
upscaler_increases_size_gui = gr.Slider(minimum=1.1, maximum=4., step=0.1, value=1.2, label="Upscale by") | |
upscaler_tile_size_gui = gr.Slider(minimum=0, maximum=512, step=16, value=0, label="Upscaler Tile Size", info="0 = no tiling") | |
upscaler_tile_overlap_gui = gr.Slider(minimum=0, maximum=48, step=1, value=8, label="Upscaler Tile Overlap") | |
hires_steps_gui = gr.Slider(minimum=0, value=30, maximum=100, step=1, label="Hires Steps") | |
hires_denoising_strength_gui = gr.Slider(minimum=0.1, maximum=1.0, step=0.01, value=0.55, label="Hires Denoising Strength") | |
hires_sampler_gui = gr.Dropdown(label="Hires Sampler", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0]) | |
hires_schedule_list = ["Use same schedule type"] + SCHEDULE_TYPE_OPTIONS | |
hires_schedule_type_gui = gr.Dropdown(label="Hires Schedule type", choices=hires_schedule_list, value=hires_schedule_list[0]) | |
hires_guidance_scale_gui = gr.Slider(minimum=-1., maximum=30., step=0.5, value=-1., label="Hires CFG", info="If the value is -1, the main CFG will be used") | |
hires_prompt_gui = gr.Textbox(label="Hires Prompt", placeholder="Main prompt will be use", lines=3) | |
hires_negative_prompt_gui = gr.Textbox(label="Hires Negative Prompt", placeholder="Main negative prompt will be use", lines=3) | |
with gr.Accordion("LoRA", open=False, visible=True): | |
def lora_dropdown(label, visible=True): | |
return gr.Dropdown(label=label, choices=lora_model_list, value="None", allow_custom_value=True, visible=visible) | |
def lora_scale_slider(label, visible=True): | |
return gr.Slider(minimum=-2, maximum=2, step=0.01, value=0.33, label=label, visible=visible) | |
lora1_gui = lora_dropdown("Lora1") | |
lora_scale_1_gui = lora_scale_slider("Lora Scale 1") | |
lora2_gui = lora_dropdown("Lora2") | |
lora_scale_2_gui = lora_scale_slider("Lora Scale 2") | |
lora3_gui = lora_dropdown("Lora3") | |
lora_scale_3_gui = lora_scale_slider("Lora Scale 3") | |
lora4_gui = lora_dropdown("Lora4") | |
lora_scale_4_gui = lora_scale_slider("Lora Scale 4") | |
lora5_gui = lora_dropdown("Lora5") | |
lora_scale_5_gui = lora_scale_slider("Lora Scale 5") | |
lora6_gui = lora_dropdown("Lora6", visible=False) | |
lora_scale_6_gui = lora_scale_slider("Lora Scale 6", visible=False) | |
lora7_gui = lora_dropdown("Lora7", visible=False) | |
lora_scale_7_gui = lora_scale_slider("Lora Scale 7", visible=False) | |
with gr.Accordion("From URL", open=False, visible=True): | |
text_lora = gr.Textbox( | |
label="LoRA's download URL", | |
placeholder="https://civitai.com/api/download/models/28907", | |
lines=1, | |
info="It has to be .safetensors files, and you can also download them from Hugging Face.", | |
) | |
romanize_text = gr.Checkbox(value=False, label="Transliterate name", visible=False) | |
button_lora = gr.Button("Get and Refresh the LoRA Lists") | |
new_lora_status = gr.HTML() | |
button_lora.click( | |
get_my_lora, | |
[text_lora, romanize_text], | |
[lora1_gui, lora2_gui, lora3_gui, lora4_gui, lora5_gui, lora6_gui, lora7_gui, new_lora_status] | |
) | |
with gr.Accordion("Face restoration", open=False, visible=True): | |
face_rest_options = [None] + FACE_RESTORATION_MODELS | |
face_restoration_model_gui = gr.Dropdown(label="Face restoration model", choices=face_rest_options, value=face_rest_options[0]) | |
face_restoration_visibility_gui = gr.Slider(minimum=0., maximum=1., step=0.001, value=1., label="Visibility") | |
face_restoration_weight_gui = gr.Slider(minimum=0., maximum=1., step=0.001, value=.5, label="Weight", info="(0 = maximum effect, 1 = minimum effect)") | |
with gr.Accordion("IP-Adapter", open=False, visible=True): | |
with gr.Accordion("IP-Adapter 1", open=False, visible=True): | |
image_ip1 = gr.Image(label="IP Image", type="filepath") | |
mask_ip1 = gr.Image(label="IP Mask", type="filepath") | |
model_ip1 = gr.Dropdown(value="plus_face", label="Model", choices=IP_MODELS) | |
mode_ip1 = gr.Dropdown(value="original", label="Mode", choices=MODE_IP_OPTIONS) | |
scale_ip1 = gr.Slider(minimum=0., maximum=2., step=0.01, value=0.7, label="Scale") | |
with gr.Accordion("IP-Adapter 2", open=False, visible=True): | |
image_ip2 = gr.Image(label="IP Image", type="filepath") | |
mask_ip2 = gr.Image(label="IP Mask (optional)", type="filepath") | |
model_ip2 = gr.Dropdown(value="base", label="Model", choices=IP_MODELS) | |
mode_ip2 = gr.Dropdown(value="style", label="Mode", choices=MODE_IP_OPTIONS) | |
scale_ip2 = gr.Slider(minimum=0., maximum=2., step=0.01, value=0.7, label="Scale") | |
with gr.Accordion("ControlNet / Img2img / Inpaint", open=False, visible=True): | |
image_control = gr.Image(label="Image ControlNet/Inpaint/Img2img", type="filepath") | |
image_mask_gui = gr.Image(label="Image Mask", type="filepath") | |
strength_gui = gr.Slider( | |
minimum=0.01, maximum=1.0, step=0.01, value=0.55, label="Strength", | |
info="This option adjusts the level of changes for img2img, repaint and inpaint." | |
) | |
image_resolution_gui = gr.Slider( | |
minimum=64, maximum=2048, step=64, value=1024, label="Image Resolution", | |
info="The maximum proportional size of the generated image based on the uploaded image." | |
) | |
controlnet_model_gui = gr.Dropdown(label="ControlNet model", choices=DIFFUSERS_CONTROLNET_MODEL, value=DIFFUSERS_CONTROLNET_MODEL[0], allow_custom_value=True) | |
control_net_output_scaling_gui = gr.Slider(minimum=0, maximum=5.0, step=0.1, value=1, label="ControlNet Output Scaling in UNet") | |
control_net_start_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=0, label="ControlNet Start Threshold (%)") | |
control_net_stop_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="ControlNet Stop Threshold (%)") | |
preprocessor_name_gui = gr.Dropdown(label="Preprocessor Name", choices=TASK_AND_PREPROCESSORS["canny"]) | |
def change_preprocessor_choices(task): | |
task = TASK_STABLEPY[task] | |
if task in TASK_AND_PREPROCESSORS.keys(): | |
choices_task = TASK_AND_PREPROCESSORS[task] | |
else: | |
choices_task = TASK_AND_PREPROCESSORS["canny"] | |
return gr.update(choices=choices_task, value=choices_task[0]) | |
task_gui.change( | |
change_preprocessor_choices, | |
[task_gui], | |
[preprocessor_name_gui], | |
) | |
preprocess_resolution_gui = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocessor Resolution") | |
low_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="'CANNY' low threshold") | |
high_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=200, label="'CANNY' high threshold") | |
value_threshold_gui = gr.Slider(minimum=1, maximum=2.0, step=0.01, value=0.1, label="'MLSD' Hough value threshold") | |
distance_threshold_gui = gr.Slider(minimum=1, maximum=20.0, step=0.01, value=0.1, label="'MLSD' Hough distance threshold") | |
recolor_gamma_correction_gui = gr.Number(minimum=0., maximum=25., value=1., step=0.001, label="'RECOLOR' gamma correction") | |
tile_blur_sigma_gui = gr.Number(minimum=0, maximum=100, value=9, step=1, label="'TILE' blur sigma") | |
with gr.Accordion("T2I adapter", open=False, visible=False): | |
t2i_adapter_preprocessor_gui = gr.Checkbox(value=True, label="T2i Adapter Preprocessor") | |
adapter_conditioning_scale_gui = gr.Slider(minimum=0, maximum=5., step=0.1, value=1, label="Adapter Conditioning Scale") | |
adapter_conditioning_factor_gui = gr.Slider(minimum=0, maximum=1., step=0.01, value=0.55, label="Adapter Conditioning Factor (%)") | |
with gr.Accordion("Styles", open=False, visible=True): | |
try: | |
style_names_found = sd_gen.model.STYLE_NAMES | |
except Exception: | |
style_names_found = STYLE_NAMES | |
style_prompt_gui = gr.Dropdown( | |
style_names_found, | |
multiselect=True, | |
value=None, | |
label="Style Prompt", | |
interactive=True, | |
) | |
style_json_gui = gr.File(label="Style JSON File") | |
style_button = gr.Button("Load styles") | |
def load_json_style_file(json): | |
if not sd_gen.model: | |
gr.Info("First load the model") | |
return gr.update(value=None, choices=STYLE_NAMES) | |
sd_gen.model.load_style_file(json) | |
gr.Info(f"{len(sd_gen.model.STYLE_NAMES)} styles loaded") | |
return gr.update(value=None, choices=sd_gen.model.STYLE_NAMES) | |
style_button.click(load_json_style_file, [style_json_gui], [style_prompt_gui]) | |
with gr.Accordion("Textual inversion", open=False, visible=False): | |
active_textual_inversion_gui = gr.Checkbox(value=False, label="Active Textual Inversion in prompt") | |
with gr.Accordion("Detailfix", open=False, visible=True): | |
# Adetailer Inpaint Only | |
adetailer_inpaint_only_gui = gr.Checkbox(label="Inpaint only", value=True) | |
# Adetailer Verbose | |
adetailer_verbose_gui = gr.Checkbox(label="Verbose", value=False) | |
# Adetailer Sampler | |
adetailer_sampler_gui = gr.Dropdown(label="Adetailer sampler:", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0]) | |
with gr.Accordion("Detailfix A", open=False, visible=True): | |
# Adetailer A | |
adetailer_active_a_gui = gr.Checkbox(label="Enable Adetailer A", value=False) | |
prompt_ad_a_gui = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3) | |
negative_prompt_ad_a_gui = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3) | |
strength_ad_a_gui = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0) | |
face_detector_ad_a_gui = gr.Checkbox(label="Face detector", value=True) | |
person_detector_ad_a_gui = gr.Checkbox(label="Person detector", value=False) | |
hand_detector_ad_a_gui = gr.Checkbox(label="Hand detector", value=False) | |
mask_dilation_a_gui = gr.Number(label="Mask dilation:", value=4, minimum=1) | |
mask_blur_a_gui = gr.Number(label="Mask blur:", value=4, minimum=1) | |
mask_padding_a_gui = gr.Number(label="Mask padding:", value=32, minimum=1) | |
with gr.Accordion("Detailfix B", open=False, visible=True): | |
# Adetailer B | |
adetailer_active_b_gui = gr.Checkbox(label="Enable Adetailer B", value=False) | |
prompt_ad_b_gui = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3) | |
negative_prompt_ad_b_gui = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3) | |
strength_ad_b_gui = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0) | |
face_detector_ad_b_gui = gr.Checkbox(label="Face detector", value=False) | |
person_detector_ad_b_gui = gr.Checkbox(label="Person detector", value=True) | |
hand_detector_ad_b_gui = gr.Checkbox(label="Hand detector", value=False) | |
mask_dilation_b_gui = gr.Number(label="Mask dilation:", value=4, minimum=1) | |
mask_blur_b_gui = gr.Number(label="Mask blur:", value=4, minimum=1) | |
mask_padding_b_gui = gr.Number(label="Mask padding:", value=32, minimum=1) | |
with gr.Accordion("Other settings", open=False, visible=True): | |
schedule_prediction_type_gui = gr.Dropdown(label="Discrete Sampling Type", choices=SCHEDULE_PREDICTION_TYPE_OPTIONS, value=SCHEDULE_PREDICTION_TYPE_OPTIONS[0]) | |
guidance_rescale_gui = gr.Number(label="CFG rescale:", value=0., step=0.01, minimum=0., maximum=1.5) | |
save_generated_images_gui = gr.Checkbox(value=True, label="Create a download link for the images") | |
filename_pattern_gui = gr.Textbox(label="Filename pattern", value="model,seed", placeholder="model,seed,sampler,schedule_type,img_width,img_height,guidance_scale,num_steps,vae,prompt_section,neg_prompt_section", lines=1) | |
hires_before_adetailer_gui = gr.Checkbox(value=False, label="Hires Before Adetailer") | |
hires_after_adetailer_gui = gr.Checkbox(value=True, label="Hires After Adetailer") | |
generator_in_cpu_gui = gr.Checkbox(value=False, label="Generator in CPU") | |
with gr.Accordion("More settings", open=False, visible=False): | |
loop_generation_gui = gr.Slider(minimum=1, value=1, label="Loop Generation") | |
retain_task_cache_gui = gr.Checkbox(value=False, label="Retain task model in cache") | |
leave_progress_bar_gui = gr.Checkbox(value=True, label="Leave Progress Bar") | |
disable_progress_bar_gui = gr.Checkbox(value=False, label="Disable Progress Bar") | |
display_images_gui = gr.Checkbox(value=False, label="Display Images") | |
image_previews_gui = gr.Checkbox(value=True, label="Image Previews") | |
image_storage_location_gui = gr.Textbox(value="./images", label="Image Storage Location") | |
retain_compel_previous_load_gui = gr.Checkbox(value=False, label="Retain Compel Previous Load") | |
retain_detailfix_model_previous_load_gui = gr.Checkbox(value=False, label="Retain Detailfix Model Previous Load") | |
retain_hires_model_previous_load_gui = gr.Checkbox(value=False, label="Retain Hires Model Previous Load") | |
xformers_memory_efficient_attention_gui = gr.Checkbox(value=False, label="Xformers Memory Efficient Attention") | |
with gr.Accordion("Examples and help", open=False, visible=True): | |
gr.Markdown(HELP_GUI) | |
gr.Markdown(EXAMPLES_GUI_HELP) | |
gr.Examples( | |
examples=EXAMPLES_GUI, | |
fn=sd_gen.generate_pipeline, | |
inputs=[ | |
prompt_gui, | |
neg_prompt_gui, | |
steps_gui, | |
cfg_gui, | |
seed_gui, | |
lora1_gui, | |
lora_scale_1_gui, | |
sampler_gui, | |
img_height_gui, | |
img_width_gui, | |
model_name_gui, | |
task_gui, | |
image_control, | |
image_resolution_gui, | |
strength_gui, | |
control_net_output_scaling_gui, | |
control_net_start_threshold_gui, | |
control_net_stop_threshold_gui, | |
prompt_syntax_gui, | |
upscaler_model_path_gui, | |
gpu_duration_gui, | |
load_lora_cpu_gui, | |
], | |
outputs=[load_model_gui, result_images, actual_task_info], | |
cache_examples=False, | |
) | |
gr.Markdown(RESOURCES) | |
with gr.Tab("Inpaint mask maker", render=True): | |
with gr.Row(): | |
with gr.Column(scale=2): | |
image_base = gr.ImageEditor( | |
sources=["upload", "clipboard"], | |
# crop_size="1:1", | |
# enable crop (or disable it) | |
# transforms=["crop"], | |
brush=gr.Brush( | |
default_size="16", # or leave it as 'auto' | |
color_mode="fixed", # 'fixed' hides the user swatches and colorpicker, 'defaults' shows it | |
# default_color="black", # html names are supported | |
colors=[ | |
"rgba(0, 0, 0, 1)", # rgb(a) | |
"rgba(0, 0, 0, 0.1)", | |
"rgba(255, 255, 255, 0.1)", | |
# "hsl(360, 120, 120)" # in fact any valid colorstring | |
] | |
), | |
eraser=gr.Eraser(default_size="16") | |
) | |
invert_mask = gr.Checkbox(value=False, label="Invert mask") | |
btn = gr.Button("Create mask") | |
with gr.Column(scale=1): | |
img_source = gr.Image(interactive=False) | |
img_result = gr.Image(label="Mask image", show_label=True, interactive=False) | |
btn_send = gr.Button("Send to the first tab") | |
btn.click(create_mask_now, [image_base, invert_mask], [img_source, img_result]) | |
def send_img(img_source, img_result): | |
return img_source, img_result | |
btn_send.click(send_img, [img_source, img_result], [image_control, image_mask_gui]) | |
with gr.Tab("PNG Info"): | |
with gr.Row(): | |
with gr.Column(): | |
image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"]) | |
with gr.Column(): | |
result_metadata = gr.Textbox(label="Metadata", show_label=True, show_copy_button=True, interactive=False, container=True, max_lines=99) | |
image_metadata.change( | |
fn=extract_exif_data, | |
inputs=[image_metadata], | |
outputs=[result_metadata], | |
) | |
with gr.Tab("Upscaler"): | |
with gr.Row(): | |
with gr.Column(): | |
USCALER_TAB_KEYS = [name for name in UPSCALER_KEYS[9:]] | |
image_up_tab = gr.Image(label="Image", type="pil", sources=["upload"]) | |
upscaler_tab = gr.Dropdown(label="Upscaler", choices=USCALER_TAB_KEYS, value=USCALER_TAB_KEYS[5]) | |
upscaler_size_tab = gr.Slider(minimum=1., maximum=4., step=0.1, value=1.1, label="Upscale by") | |
generate_button_up_tab = gr.Button(value="START UPSCALE", variant="primary") | |
with gr.Column(): | |
result_up_tab = gr.Image(label="Result", type="pil", interactive=False, format="png") | |
generate_button_up_tab.click( | |
fn=process_upscale, | |
inputs=[image_up_tab, upscaler_tab, upscaler_size_tab], | |
outputs=[result_up_tab], | |
) | |
with gr.Tab("Preprocessor", render=True): | |
preprocessor_tab() | |
generate_button.click( | |
fn=sd_gen.load_new_model, | |
inputs=[ | |
model_name_gui, | |
vae_model_gui, | |
task_gui, | |
controlnet_model_gui, | |
], | |
outputs=[load_model_gui], | |
queue=True, | |
show_progress="minimal", | |
).success( | |
fn=sd_gen_generate_pipeline, # fn=sd_gen.generate_pipeline, | |
inputs=[ | |
prompt_gui, | |
neg_prompt_gui, | |
num_images_gui, | |
steps_gui, | |
cfg_gui, | |
clip_skip_gui, | |
seed_gui, | |
lora1_gui, | |
lora_scale_1_gui, | |
lora2_gui, | |
lora_scale_2_gui, | |
lora3_gui, | |
lora_scale_3_gui, | |
lora4_gui, | |
lora_scale_4_gui, | |
lora5_gui, | |
lora_scale_5_gui, | |
lora6_gui, | |
lora_scale_6_gui, | |
lora7_gui, | |
lora_scale_7_gui, | |
sampler_gui, | |
schedule_type_gui, | |
schedule_prediction_type_gui, | |
img_height_gui, | |
img_width_gui, | |
model_name_gui, | |
vae_model_gui, | |
task_gui, | |
image_control, | |
preprocessor_name_gui, | |
preprocess_resolution_gui, | |
image_resolution_gui, | |
style_prompt_gui, | |
style_json_gui, | |
image_mask_gui, | |
strength_gui, | |
low_threshold_gui, | |
high_threshold_gui, | |
value_threshold_gui, | |
distance_threshold_gui, | |
recolor_gamma_correction_gui, | |
tile_blur_sigma_gui, | |
control_net_output_scaling_gui, | |
control_net_start_threshold_gui, | |
control_net_stop_threshold_gui, | |
active_textual_inversion_gui, | |
prompt_syntax_gui, | |
upscaler_model_path_gui, | |
upscaler_increases_size_gui, | |
upscaler_tile_size_gui, | |
upscaler_tile_overlap_gui, | |
hires_steps_gui, | |
hires_denoising_strength_gui, | |
hires_sampler_gui, | |
hires_prompt_gui, | |
hires_negative_prompt_gui, | |
hires_before_adetailer_gui, | |
hires_after_adetailer_gui, | |
hires_schedule_type_gui, | |
hires_guidance_scale_gui, | |
controlnet_model_gui, | |
loop_generation_gui, | |
leave_progress_bar_gui, | |
disable_progress_bar_gui, | |
image_previews_gui, | |
display_images_gui, | |
save_generated_images_gui, | |
filename_pattern_gui, | |
image_storage_location_gui, | |
retain_compel_previous_load_gui, | |
retain_detailfix_model_previous_load_gui, | |
retain_hires_model_previous_load_gui, | |
t2i_adapter_preprocessor_gui, | |
adapter_conditioning_scale_gui, | |
adapter_conditioning_factor_gui, | |
xformers_memory_efficient_attention_gui, | |
free_u_gui, | |
generator_in_cpu_gui, | |
adetailer_inpaint_only_gui, | |
adetailer_verbose_gui, | |
adetailer_sampler_gui, | |
adetailer_active_a_gui, | |
prompt_ad_a_gui, | |
negative_prompt_ad_a_gui, | |
strength_ad_a_gui, | |
face_detector_ad_a_gui, | |
person_detector_ad_a_gui, | |
hand_detector_ad_a_gui, | |
mask_dilation_a_gui, | |
mask_blur_a_gui, | |
mask_padding_a_gui, | |
adetailer_active_b_gui, | |
prompt_ad_b_gui, | |
negative_prompt_ad_b_gui, | |
strength_ad_b_gui, | |
face_detector_ad_b_gui, | |
person_detector_ad_b_gui, | |
hand_detector_ad_b_gui, | |
mask_dilation_b_gui, | |
mask_blur_b_gui, | |
mask_padding_b_gui, | |
retain_task_cache_gui, | |
guidance_rescale_gui, | |
image_ip1, | |
mask_ip1, | |
model_ip1, | |
mode_ip1, | |
scale_ip1, | |
image_ip2, | |
mask_ip2, | |
model_ip2, | |
mode_ip2, | |
scale_ip2, | |
pag_scale_gui, | |
face_restoration_model_gui, | |
face_restoration_visibility_gui, | |
face_restoration_weight_gui, | |
load_lora_cpu_gui, | |
verbose_info_gui, | |
gpu_duration_gui, | |
], | |
outputs=[load_model_gui, result_images, actual_task_info], | |
queue=True, | |
show_progress="minimal", | |
) | |
app.queue() | |
app.launch( | |
show_error=True, | |
debug=True, | |
allowed_paths=["./images/"], | |
) |