Spaces:
Runtime error
Runtime error
File size: 8,808 Bytes
583456e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
# Copyright (c) Facebook, Inc. and its affiliates.
# Copyright (c) Meta Platforms, Inc. All Rights Reserved
import copy
from itertools import count
import math
import numpy as np
import torch
from fvcore.transforms import HFlipTransform
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from detectron2.data.detection_utils import read_image
from detectron2.modeling import DatasetMapperTTA
from detectron2.modeling.postprocessing import sem_seg_postprocess
import logging
from detectron2.utils.logger import log_every_n, log_first_n
__all__ = [
"SemanticSegmentorWithTTA",
]
class SemanticSegmentorWithTTA(nn.Module):
"""
A SemanticSegmentor with test-time augmentation enabled.
Its :meth:`__call__` method has the same interface as :meth:`SemanticSegmentor.forward`.
"""
def __init__(self, cfg, model, tta_mapper=None, batch_size=1):
"""
Args:
cfg (CfgNode):
model (SemanticSegmentor): a SemanticSegmentor to apply TTA on.
tta_mapper (callable): takes a dataset dict and returns a list of
augmented versions of the dataset dict. Defaults to
`DatasetMapperTTA(cfg)`.
batch_size (int): batch the augmented images into this batch size for inference.
"""
super().__init__()
if isinstance(model, DistributedDataParallel):
model = model.module
self.cfg = cfg.clone()
self.model = model
if tta_mapper is None:
tta_mapper = DatasetMapperTTA(cfg)
self.tta_mapper = tta_mapper
self.batch_size = batch_size
def _inference_with_model(self, inputs):
if self.cfg.TEST.SLIDING_WINDOW:
log_first_n(logging.INFO, "Using sliding window to test")
outputs = []
for input in inputs:
image_size = input["image"].shape[1:] # h,w
if self.cfg.TEST.SLIDING_TILE_SIZE > 0:
tile_size = (
self.cfg.TEST.SLIDING_TILE_SIZE,
self.cfg.TEST.SLIDING_TILE_SIZE,
)
else:
selected_mapping = {256: 224, 512: 256, 768: 512, 896: 512}
tile_size = min(image_size)
tile_size = selected_mapping[tile_size]
tile_size = (tile_size, tile_size)
extra_info = {
k: v
for k, v in input.items()
if k not in ["image", "height", "width"]
}
log_every_n(
logging.INFO, "split {} to {}".format(image_size, tile_size)
)
overlap = self.cfg.TEST.SLIDING_OVERLAP
stride = math.ceil(tile_size[0] * (1 - overlap))
tile_rows = int(
math.ceil((image_size[0] - tile_size[0]) / stride) + 1
) # strided convolution formula
tile_cols = int(math.ceil((image_size[1] - tile_size[1]) / stride) + 1)
full_probs = None
count_predictions = None
tile_counter = 0
for row in range(tile_rows):
for col in range(tile_cols):
x1 = int(col * stride)
y1 = int(row * stride)
x2 = min(x1 + tile_size[1], image_size[1])
y2 = min(y1 + tile_size[0], image_size[0])
x1 = max(
int(x2 - tile_size[1]), 0
) # for portrait images the x1 underflows sometimes
y1 = max(
int(y2 - tile_size[0]), 0
) # for very few rows y1 underflows
img = input["image"][:, y1:y2, x1:x2]
padded_img = nn.functional.pad(
img,
(
0,
tile_size[1] - img.shape[-1],
0,
tile_size[0] - img.shape[-2],
),
)
tile_counter += 1
padded_input = {"image": padded_img}
padded_input.update(extra_info)
padded_prediction = self.model([padded_input])[0]["sem_seg"]
prediction = padded_prediction[
:, 0 : img.shape[1], 0 : img.shape[2]
]
if full_probs is None:
full_probs = prediction.new_zeros(
prediction.shape[0], image_size[0], image_size[1]
)
if count_predictions is None:
count_predictions = prediction.new_zeros(
prediction.shape[0], image_size[0], image_size[1]
)
count_predictions[:, y1:y2, x1:x2] += 1
full_probs[
:, y1:y2, x1:x2
] += prediction # accumulate the predictions also in the overlapping regions
full_probs /= count_predictions
full_probs = sem_seg_postprocess(
full_probs,
image_size,
input.get("height", image_size[0]),
input.get("width", image_size[1]),
)
outputs.append({"sem_seg": full_probs})
return outputs
else:
log_first_n(logging.INFO, "Using whole image to test")
return self.model(inputs)
def _batch_inference(self, batched_inputs):
"""
Execute inference on a list of inputs,
using batch size = self.batch_size, instead of the length of the list.
Inputs & outputs have the same format as :meth:`SemanticSegmentor.forward`
"""
outputs = []
inputs = []
for idx, input in zip(count(), batched_inputs):
inputs.append(input)
if len(inputs) == self.batch_size or idx == len(batched_inputs) - 1:
with torch.no_grad():
outputs.extend(self._inference_with_model(inputs))
inputs = []
return outputs
def __call__(self, batched_inputs):
"""
Same input/output format as :meth:`SemanticSegmentor.forward`
"""
def _maybe_read_image(dataset_dict):
ret = copy.copy(dataset_dict)
if "image" not in ret:
image = read_image(ret.pop("file_name"), self.model.input_format)
image = torch.from_numpy(
np.ascontiguousarray(image.transpose(2, 0, 1))
) # CHW
ret["image"] = image
if "height" not in ret and "width" not in ret:
ret["height"] = image.shape[1]
ret["width"] = image.shape[2]
return ret
return [self._inference_one_image(_maybe_read_image(x)) for x in batched_inputs]
def _inference_one_image(self, input):
"""
Args:
input (dict): one dataset dict with "image" field being a CHW tensor
Returns:
dict: one output dict
"""
augmented_inputs, tfms = self._get_augmented_inputs(input)
# 1: forward with all augmented images
outputs = self._batch_inference(augmented_inputs)
# Delete now useless variables to avoid being out of memory
del augmented_inputs
# 2: merge the results
# handle flip specially
# outputs = [output.detach() for output in outputs]
return self._merge_auged_output(outputs, tfms)
def _merge_auged_output(self, outputs, tfms):
new_outputs = []
for output, tfm in zip(outputs, tfms):
if any(isinstance(t, HFlipTransform) for t in tfm.transforms):
new_outputs.append(output["sem_seg"].flip(dims=[2]))
else:
new_outputs.append(output["sem_seg"])
del outputs
# to avoid OOM with torch.stack
final_predictions = new_outputs[0]
for i in range(1, len(new_outputs)):
final_predictions += new_outputs[i]
final_predictions = final_predictions / len(new_outputs)
del new_outputs
return {"sem_seg": final_predictions}
def _get_augmented_inputs(self, input):
augmented_inputs = self.tta_mapper(input)
tfms = [x.pop("transforms") for x in augmented_inputs]
return augmented_inputs, tfms
|