File size: 4,646 Bytes
583456e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright (c) Facebook, Inc. and its affiliates.
# Copyright (c) Meta Platforms, Inc. All Rights Reserved

from detectron2.config import CfgNode as CN


def add_mask_former_default_config(cfg):
    # data config
    # select the dataset mapper
    cfg.INPUT.DATASET_MAPPER_NAME = "mask_former_semantic"
    # Color augmentation
    cfg.INPUT.COLOR_AUG_SSD = False
    # We retry random cropping until no single category in semantic segmentation GT occupies more
    # than `SINGLE_CATEGORY_MAX_AREA` part of the crop.
    cfg.INPUT.CROP.SINGLE_CATEGORY_MAX_AREA = 1.0
    # Pad image and segmentation GT in dataset mapper.
    cfg.INPUT.SIZE_DIVISIBILITY = -1

    # solver config
    # test batch size
    cfg.SOLVER.TEST_IMS_PER_BATCH = 1
    # weight decay on embedding
    cfg.SOLVER.WEIGHT_DECAY_EMBED = 0.0
    # optimizer
    cfg.SOLVER.OPTIMIZER = "ADAMW"
    cfg.SOLVER.BACKBONE_MULTIPLIER = 0.1

    # mask_former model config
    cfg.MODEL.MASK_FORMER = CN()

    # loss
    cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION = True
    cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT = 0.1
    cfg.MODEL.MASK_FORMER.DICE_WEIGHT = 1.0
    cfg.MODEL.MASK_FORMER.MASK_WEIGHT = 20.0

    # transformer config
    cfg.MODEL.MASK_FORMER.NHEADS = 8
    cfg.MODEL.MASK_FORMER.DROPOUT = 0.1
    cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD = 2048
    cfg.MODEL.MASK_FORMER.ENC_LAYERS = 0
    cfg.MODEL.MASK_FORMER.DEC_LAYERS = 6
    cfg.MODEL.MASK_FORMER.PRE_NORM = False

    cfg.MODEL.MASK_FORMER.HIDDEN_DIM = 256
    cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES = 100

    cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE = "res5"
    cfg.MODEL.MASK_FORMER.ENFORCE_INPUT_PROJ = False

    # mask_former inference config
    cfg.MODEL.MASK_FORMER.TEST = CN()
    cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON = False
    cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD = 0.0
    cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD = 0.0
    cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE = False

    # Sometimes `backbone.size_divisibility` is set to 0 for some backbone (e.g. ResNet)
    # you can use this config to override
    cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY = 32

    # pixel decoder config
    cfg.MODEL.SEM_SEG_HEAD.MASK_DIM = 256
    # adding transformer in pixel decoder
    cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS = 0
    # pixel decoder
    cfg.MODEL.SEM_SEG_HEAD.PIXEL_DECODER_NAME = "BasePixelDecoder"

    # swin transformer backbone
    cfg.MODEL.SWIN = CN()
    cfg.MODEL.SWIN.PRETRAIN_IMG_SIZE = 224
    cfg.MODEL.SWIN.PATCH_SIZE = 4
    cfg.MODEL.SWIN.EMBED_DIM = 96
    cfg.MODEL.SWIN.DEPTHS = [2, 2, 6, 2]
    cfg.MODEL.SWIN.NUM_HEADS = [3, 6, 12, 24]
    cfg.MODEL.SWIN.WINDOW_SIZE = 7
    cfg.MODEL.SWIN.MLP_RATIO = 4.0
    cfg.MODEL.SWIN.QKV_BIAS = True
    cfg.MODEL.SWIN.QK_SCALE = None
    cfg.MODEL.SWIN.NORM_INDICES = None
    cfg.MODEL.SWIN.PROJECTION = False
    cfg.MODEL.SWIN.PROJECT_DIM = 256
    cfg.MODEL.SWIN.DROP_RATE = 0.0
    cfg.MODEL.SWIN.ATTN_DROP_RATE = 0.0
    cfg.MODEL.SWIN.DROP_PATH_RATE = 0.3
    cfg.MODEL.SWIN.APE = False
    cfg.MODEL.SWIN.PATCH_NORM = True
    cfg.MODEL.SWIN.OUT_FEATURES = ["res2", "res3", "res4", "res5"]


def add_our_config(cfg):
    cfg.TEST.SLIDING_WINDOW = False
    cfg.TEST.SLIDING_TILE_SIZE = 224
    cfg.TEST.SLIDING_OVERLAP = 2 / 3.0
    # whether to use dense crf
    cfg.TEST.DENSE_CRF = False
    cfg.DATASETS.SAMPLE_PER_CLASS = -1
    cfg.DATASETS.SAMPLE_SEED = 0
    # embedding head
    cfg.MODEL.SEM_SEG_HEAD.EMBEDDING_DIM = 512
    cfg.MODEL.SEM_SEG_HEAD.EMBED_HIDDEN_DIM = 1024
    cfg.MODEL.SEM_SEG_HEAD.EMBED_LAYERS = 2
    # clip_adapter
    cfg.MODEL.CLIP_ADAPTER = CN()
    cfg.MODEL.CLIP_ADAPTER.TEXT_TEMPLATES = "vild"
    # for predefined
    cfg.MODEL.CLIP_ADAPTER.PREDEFINED_PROMPT_TEMPLATES = ["a photo of a {}."]
    # for learnable prompt
    cfg.MODEL.CLIP_ADAPTER.PROMPT_CHECKPOINT = ""
    cfg.MODEL.CLIP_ADAPTER.CLIP_MODEL_NAME = "ViT-B/16"
    cfg.MODEL.CLIP_ADAPTER.MASK_FILL = "mean"
    cfg.MODEL.CLIP_ADAPTER.MASK_EXPAND_RATIO = 1.0
    cfg.MODEL.CLIP_ADAPTER.MASK_THR = 0.4
    cfg.MODEL.CLIP_ADAPTER.MASK_MATTING = False
    cfg.MODEL.CLIP_ADAPTER.REGION_RESIZED = True
    cfg.MODEL.CLIP_ADAPTER.CLIP_ENSEMBLE = True
    cfg.MODEL.CLIP_ADAPTER.CLIP_ENSEMBLE_WEIGHT = 0.7
    # for mask prompt
    cfg.MODEL.CLIP_ADAPTER.MASK_PROMPT_DEPTH = 3
    cfg.MODEL.CLIP_ADAPTER.MASK_PROMPT_FWD = False

    # wandb
    cfg.WANDB = CN()
    cfg.WANDB.PROJECT = "open_vocab_seg"
    cfg.WANDB.NAME = None


def add_ovseg_config(cfg):
    """
    Add config for open_vocab_seg.
    """
    add_mask_former_default_config(cfg)
    add_our_config(cfg)