import os import re import logging import gradio as gr import openai from itertools import zip_longest print(os.environ) openai.api_base1 = os.environ.get("OPENAI_API_BASE1") openai.api_base2 = os.environ.get("OPENAI_API_BASE2") openai.api_key1 = os.environ.get("OPENAI_API_KEY") openai.api_key2 = os.environ.get("OPENAI_API_KEY") openai.api_model1 = os.environ.get("OPENAI_API_MODEL1") openai.api_model2 = os.environ.get("OPENAI_API_MODEL2") BASE_SYSTEM_MESSAGE = """""" def make_prediction(prompt, api_model, api_key, api_base, max_tokens=None, temperature=None, top_p=None, top_k=None, repetition_penalty=None): completion = openai.Completion.create( model=api_model, api_key=api_key, api_base=api_base, prompt=prompt, max_tokens=max_tokens, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty, stream=True, stop=["", "<|im_end|>"]) for chunk in completion: yield chunk["choices"][0]["text"] def clear_chat(chat_history_state, chat_message): chat_history_state = [] chat_message = '' return chat_history_state, chat_message def user(message, history): history = history or [] # Append the user's message to the conversation history history.append([message, ""]) return message, history def user_double(message, history1, history2): history1 = history1 or [] history2 = history2 or [] history1.append([message, ""]) history2.append([message, ""]) return "", history1, history2 def chat(api_model, history, system_message, max_tokens, temperature, top_p, top_k, repetition_penalty, api_key, api_base): history = history or [] messages = BASE_SYSTEM_MESSAGE + system_message.strip() + "\n" + \ "\n".join(["\n".join(["### Instruction:\n"+item[0]+"\n\n", "### Response:\n"+item[1]+"\n\n"]) for item in history]) # strip the last `<|end_of_turn|>` from the messages #messages = messages.rstrip("<|end_of_turn|>") # remove last space from assistant, some models output a ZWSP if you leave a space messages = messages.rstrip() prediction = make_prediction( messages, api_model, api_key, api_base, max_tokens=max_tokens, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty, ) for tokens in prediction: tokens = re.findall(r'(.*?)(\s|$)', tokens) for subtoken in tokens: subtoken = "".join(subtoken) # Remove "Response\n" if it's at the beginning of the assistant's output if subtoken.startswith("Response"): subtoken = subtoken[len("Response"):] answer = subtoken history[-1][1] += answer # stream the response yield history, history, "" def chat_double(history1, history2, system_message, max_tokens, temperature, top_p, top_k, repetition_penalty): gen1 = chat(openai.api_model1, history1, system_message, max_tokens, temperature, top_p, top_k, repetition_penalty, openai.api_key1, openai.api_base1) gen2 = chat(openai.api_model2, history2, system_message, max_tokens, temperature, top_p, top_k, repetition_penalty, openai.api_key2, openai.api_base2) # Define a default value that will be used when one of the generators is exhausted latest_chatbot1_out, latest_chat_history_state1_out, _ = ([["", ""]], [["", ""]], "") latest_chatbot2_out, latest_chat_history_state2_out, _ = ([["", ""]], [["", ""]], "") for out1, out2 in zip_longest(gen1, gen2, fillvalue=None): if out1 is not None: # None means gen1 is exhausted chatbot1_out, chat_history_state1_out, _ = out1 latest_chatbot1_out, latest_chat_history_state1_out = chatbot1_out, chat_history_state1_out if out2 is not None: # None means gen2 is exhausted chatbot2_out, chat_history_state2_out, _ = out2 latest_chatbot2_out, latest_chat_history_state2_out = chatbot2_out, chat_history_state2_out yield latest_chatbot1_out, latest_chatbot2_out, latest_chat_history_state1_out, latest_chat_history_state2_out, "" start_message = "" CSS =""" .contain { display: flex; flex-direction: column; } .gradio-container { height: 100vh !important; } #component-0 { height: 100%; } #chatbot { flex-grow: 1; overflow: auto; resize: vertical; } #chatbot1 { flex-grow: 1; overflow: auto; resize: vertical; } #chatbot2 { flex-grow: 1; overflow: auto; resize: vertical; } """ with gr.Blocks(css=CSS) as demo: with gr.Row(): with gr.Column(): gr.Markdown(f""" ## This demo is a quantized GPU chatbot of [WizardCoder-Python-34B-V1.0-GGUF](https://huggingface.co./TheBloke/WizardCoder-Python-34B-V1.0-GGUF) It runs two different quantization levels in parallel for comparison. Best run at temperature 0. """) with gr.Row(): gr.Markdown("# 🔍 WizardCoder-Python-34B-V1.0-GGUF Playground Space! 🔎") with gr.Row(): with gr.Column(): #chatbot = gr.Chatbot().style(height=500) chatbot1 = gr.Chatbot(label="Chat1: "+openai.api_model1, elem_id="chatbot1") with gr.Column(): chatbot2 = gr.Chatbot(label="Chat2: "+openai.api_model2, elem_id="chatbot2") with gr.Row(): message = gr.Textbox( label="What do you want to chat about?", placeholder="Ask me anything.", lines=3, ) with gr.Row(): submit = gr.Button(value="Send message", variant="secondary").style(full_width=True) clear = gr.Button(value="New topic", variant="secondary").style(full_width=False) stop = gr.Button(value="Stop", variant="secondary").style(full_width=False) with gr.Accordion("Show Model Parameters", open=False): with gr.Row(): with gr.Column(): max_tokens = gr.Slider(20, 4000, label="Max Tokens", step=20, value=2000) temperature = gr.Slider(0.0, 2.0, label="Temperature", step=0.1, value=0.0) top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.02, value=1.0) top_k = gr.Slider(-1, 100, label="Top K", step=1, value=0) repetition_penalty = gr.Slider(0.0, 2.0, label="Repetition Penalty", step=0.05, value=1.1) system_msg = gr.Textbox( start_message, label="System Message", interactive=True, visible=True, placeholder="System prompt. Provide instructions which you want the model to remember.", lines=3) chat_history_state1 = gr.State() chat_history_state2 = gr.State() clear.click(clear_chat, inputs=[chat_history_state1, message], outputs=[chat_history_state1, message], queue=False) clear.click(clear_chat, inputs=[chat_history_state2, message], outputs=[chat_history_state2, message], queue=False) clear.click(lambda: None, None, chatbot1, queue=False) clear.click(lambda: None, None, chatbot2, queue=False) submit_click_event = submit.click( fn=user_double, inputs=[message, chat_history_state1, chat_history_state2], outputs=[message, chat_history_state1, chat_history_state2], queue=True ).then( fn=chat_double, inputs=[chat_history_state1, chat_history_state2, system_msg, max_tokens, temperature, top_p, top_k, repetition_penalty], outputs=[chatbot1, chatbot2, chat_history_state1, chat_history_state2, message], queue=True ) stop.click(fn=None, inputs=None, outputs=None, cancels=[submit_click_event], queue=False) demo.queue(max_size=48, concurrency_count=8).launch(debug=True, server_name="0.0.0.0", server_port=7860)