File size: 7,178 Bytes
19f98dc
 
 
4d0ad40
 
e14bb0a
 
19f98dc
 
 
e14bb0a
19f98dc
c2cf1ee
4d0ad40
19f98dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c9f948
19f98dc
 
0c9f948
 
 
 
19f98dc
0c9f948
 
7a7c75c
19f98dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c9f948
19f98dc
 
 
 
4d0ad40
19f98dc
 
 
 
4d0ad40
 
c3fecad
 
4d0ad40
 
19f98dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d0ad40
 
0c9f948
4d0ad40
 
 
 
 
19f98dc
4d0ad40
addfecb
19f98dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
addfecb
 
 
 
 
 
 
0c9f948
19f98dc
 
 
 
 
 
 
 
 
 
4d0ad40
 
 
 
 
 
 
 
19f98dc
4d0ad40
 
19f98dc
4d0ad40
 
 
6f3da65
 
 
4d0ad40
19f98dc
4d0ad40
 
 
 
 
 
 
 
 
 
19f98dc
 
 
 
 
 
 
 
 
 
 
4d0ad40
 
19f98dc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import secrets
from typing import cast

import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxFillPipeline
from gradio.components.image_editor import EditorValue
from PIL import Image, ImageOps

DEVICE = "cuda"

MAX_SEED = np.iinfo(np.int32).max
FIXED_DIMENSION = 900

SYSTEM_PROMPT = r"""This two-panel split-frame image showcases a furniture in as a product shot versus styled in a room.
[LEFT] standalone product shot image the furniture on a white background.
[RIGHT] integrated example within a room scene."""

if not torch.cuda.is_available():

    def _dummy_pipe(image: Image.Image, *args, **kwargs):  # noqa: ARG001
        return {"images": [image]}

    pipe = _dummy_pipe
else:
    state_dict, network_alphas = FluxFillPipeline.lora_state_dict(
        pretrained_model_name_or_path_or_dict="blanchon/FluxFillFurniture",
        weight_name="pytorch_lora_weights3.safetensors",
        return_alphas=True,
    )

    if not all(("lora" in key or "dora_scale" in key) for key in state_dict):
        msg = "Invalid LoRA checkpoint."
        raise ValueError(msg)

    pipe = FluxFillPipeline.from_pretrained(
        "black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
    ).to(DEVICE)
    FluxFillPipeline.load_lora_into_transformer(
        state_dict=state_dict,
        network_alphas=network_alphas,
        transformer=pipe.transformer,
    )
    pipe.to(DEVICE)


def calculate_optimal_dimensions(image: Image.Image) -> tuple[int, int]:
    width, height = image.size
    # Ensure dimensions are multiples of 8
    width = (width // 8) * 8
    height = (height // 8) * 8

    return int(width), int(height)


@spaces.GPU
def infer(
    furniture_image: Image.Image,
    room_image: EditorValue,
    prompt,
    seed=42,
    randomize_seed=False,
    guidance_scale=3.5,
    num_inference_steps=28,
    progress=gr.Progress(track_tqdm=True),  # noqa: ARG001, B008
):
    _room_image = room_image["background"]
    if _room_image is None:
        msg = "Room image is required"
        raise ValueError(msg)
    _room_image = cast(Image.Image, _room_image)
    _room_image = ImageOps.fit(
        _room_image,
        (FIXED_DIMENSION, FIXED_DIMENSION),
        method=Image.Resampling.LANCZOS,
        centering=(0.5, 0.5),
    )

    _room_mask = room_image["layers"][0]
    if _room_mask is None:
        msg = "Room mask is required"
        raise ValueError(msg)
    _room_mask = cast(Image.Image, _room_mask)
    _room_mask = ImageOps.fit(
        _room_mask,
        (FIXED_DIMENSION, FIXED_DIMENSION),
        method=Image.Resampling.LANCZOS,
        centering=(0.5, 0.5),
    )

    furniture_image = ImageOps.fit(
        furniture_image,
        (FIXED_DIMENSION, FIXED_DIMENSION),
        method=Image.Resampling.LANCZOS,
        centering=(0.5, 0.5),
    )
    _furniture_image = Image.new(
        "RGB",
        (FIXED_DIMENSION, FIXED_DIMENSION),
        (255, 255, 255),
    )
    _furniture_image.paste(furniture_image, (0, 0))

    _furniture_mask = Image.new(
        "RGB", (FIXED_DIMENSION, FIXED_DIMENSION), (255, 255, 255)
    )

    image = Image.new(
        "RGB",
        (FIXED_DIMENSION * 2, FIXED_DIMENSION),
        (255, 255, 255),
    )
    # Paste on the center of the image
    image.paste(_furniture_image, (0, 0))
    image.paste(_room_image, (FIXED_DIMENSION, 0))

    mask = Image.new(
        "RGB",
        (FIXED_DIMENSION * 2, FIXED_DIMENSION),
        (255, 255, 255),
    )
    mask.paste(_furniture_mask, (0, 0))
    mask.paste(_room_mask, (FIXED_DIMENSION, 0))

    width, height = calculate_optimal_dimensions(image)
    # Resize the image and mask to the optimal dimensions for the VAe
    image = image.resize((width, height))
    mask = mask.resize((width, height))

    if randomize_seed:
        seed = secrets.randbelow(MAX_SEED)

    results_images = pipe(
        prompt=prompt + ".\n" + SYSTEM_PROMPT,
        image=image,
        mask_image=mask,
        height=height,
        width=width,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        batch_size=4,
        generator=torch.Generator("cpu").manual_seed(seed),
    )["images"]

    cropped_images = [
        image.crop((FIXED_DIMENSION, 0, FIXED_DIMENSION * 2, FIXED_DIMENSION))
        for image in results_images
    ]

    return cropped_images, seed


intro_markdown = """
# AnyFurnish

AnyFurnish is a tool that allows you to generate furniture images using Flux.1 Fill Dev.
"""

css = """
#col-container {
    margin: 0 auto;
    max-width: 1000px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(intro_markdown)
        with gr.Row():
            with gr.Column():
                with gr.Column():
                    furniture_image = gr.Image(
                        label="Furniture Image",
                        type="pil",
                        sources=["upload"],
                        image_mode="RGB",
                        height=300,
                    )
                    room_image = gr.ImageEditor(
                        label="Room Image - Draw mask for inpainting",
                        type="pil",
                        sources=["upload"],
                        image_mode="RGB",
                        layers=False,
                        brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"),
                        height=300,
                    )
                prompt = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    container=False,
                )
                run_button = gr.Button("Run")

            results = gr.Gallery(
                label="Results",
                format="png",
                show_label=False,
                columns=2,
                height=600,
                preview=True,
            )

        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=30,
                    step=0.5,
                    value=50,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            furniture_image,
            room_image,
            prompt,
            seed,
            randomize_seed,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[results, seed],
    )

demo.launch()