Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,178 Bytes
19f98dc 4d0ad40 e14bb0a 19f98dc e14bb0a 19f98dc c2cf1ee 4d0ad40 19f98dc 0c9f948 19f98dc 0c9f948 19f98dc 0c9f948 7a7c75c 19f98dc 0c9f948 19f98dc 4d0ad40 19f98dc 4d0ad40 c3fecad 4d0ad40 19f98dc 4d0ad40 0c9f948 4d0ad40 19f98dc 4d0ad40 addfecb 19f98dc addfecb 0c9f948 19f98dc 4d0ad40 19f98dc 4d0ad40 19f98dc 4d0ad40 6f3da65 4d0ad40 19f98dc 4d0ad40 19f98dc 4d0ad40 19f98dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import secrets
from typing import cast
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxFillPipeline
from gradio.components.image_editor import EditorValue
from PIL import Image, ImageOps
DEVICE = "cuda"
MAX_SEED = np.iinfo(np.int32).max
FIXED_DIMENSION = 900
SYSTEM_PROMPT = r"""This two-panel split-frame image showcases a furniture in as a product shot versus styled in a room.
[LEFT] standalone product shot image the furniture on a white background.
[RIGHT] integrated example within a room scene."""
if not torch.cuda.is_available():
def _dummy_pipe(image: Image.Image, *args, **kwargs): # noqa: ARG001
return {"images": [image]}
pipe = _dummy_pipe
else:
state_dict, network_alphas = FluxFillPipeline.lora_state_dict(
pretrained_model_name_or_path_or_dict="blanchon/FluxFillFurniture",
weight_name="pytorch_lora_weights3.safetensors",
return_alphas=True,
)
if not all(("lora" in key or "dora_scale" in key) for key in state_dict):
msg = "Invalid LoRA checkpoint."
raise ValueError(msg)
pipe = FluxFillPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
).to(DEVICE)
FluxFillPipeline.load_lora_into_transformer(
state_dict=state_dict,
network_alphas=network_alphas,
transformer=pipe.transformer,
)
pipe.to(DEVICE)
def calculate_optimal_dimensions(image: Image.Image) -> tuple[int, int]:
width, height = image.size
# Ensure dimensions are multiples of 8
width = (width // 8) * 8
height = (height // 8) * 8
return int(width), int(height)
@spaces.GPU
def infer(
furniture_image: Image.Image,
room_image: EditorValue,
prompt,
seed=42,
randomize_seed=False,
guidance_scale=3.5,
num_inference_steps=28,
progress=gr.Progress(track_tqdm=True), # noqa: ARG001, B008
):
_room_image = room_image["background"]
if _room_image is None:
msg = "Room image is required"
raise ValueError(msg)
_room_image = cast(Image.Image, _room_image)
_room_image = ImageOps.fit(
_room_image,
(FIXED_DIMENSION, FIXED_DIMENSION),
method=Image.Resampling.LANCZOS,
centering=(0.5, 0.5),
)
_room_mask = room_image["layers"][0]
if _room_mask is None:
msg = "Room mask is required"
raise ValueError(msg)
_room_mask = cast(Image.Image, _room_mask)
_room_mask = ImageOps.fit(
_room_mask,
(FIXED_DIMENSION, FIXED_DIMENSION),
method=Image.Resampling.LANCZOS,
centering=(0.5, 0.5),
)
furniture_image = ImageOps.fit(
furniture_image,
(FIXED_DIMENSION, FIXED_DIMENSION),
method=Image.Resampling.LANCZOS,
centering=(0.5, 0.5),
)
_furniture_image = Image.new(
"RGB",
(FIXED_DIMENSION, FIXED_DIMENSION),
(255, 255, 255),
)
_furniture_image.paste(furniture_image, (0, 0))
_furniture_mask = Image.new(
"RGB", (FIXED_DIMENSION, FIXED_DIMENSION), (255, 255, 255)
)
image = Image.new(
"RGB",
(FIXED_DIMENSION * 2, FIXED_DIMENSION),
(255, 255, 255),
)
# Paste on the center of the image
image.paste(_furniture_image, (0, 0))
image.paste(_room_image, (FIXED_DIMENSION, 0))
mask = Image.new(
"RGB",
(FIXED_DIMENSION * 2, FIXED_DIMENSION),
(255, 255, 255),
)
mask.paste(_furniture_mask, (0, 0))
mask.paste(_room_mask, (FIXED_DIMENSION, 0))
width, height = calculate_optimal_dimensions(image)
# Resize the image and mask to the optimal dimensions for the VAe
image = image.resize((width, height))
mask = mask.resize((width, height))
if randomize_seed:
seed = secrets.randbelow(MAX_SEED)
results_images = pipe(
prompt=prompt + ".\n" + SYSTEM_PROMPT,
image=image,
mask_image=mask,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
batch_size=4,
generator=torch.Generator("cpu").manual_seed(seed),
)["images"]
cropped_images = [
image.crop((FIXED_DIMENSION, 0, FIXED_DIMENSION * 2, FIXED_DIMENSION))
for image in results_images
]
return cropped_images, seed
intro_markdown = """
# AnyFurnish
AnyFurnish is a tool that allows you to generate furniture images using Flux.1 Fill Dev.
"""
css = """
#col-container {
margin: 0 auto;
max-width: 1000px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(intro_markdown)
with gr.Row():
with gr.Column():
with gr.Column():
furniture_image = gr.Image(
label="Furniture Image",
type="pil",
sources=["upload"],
image_mode="RGB",
height=300,
)
room_image = gr.ImageEditor(
label="Room Image - Draw mask for inpainting",
type="pil",
sources=["upload"],
image_mode="RGB",
layers=False,
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"),
height=300,
)
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run")
results = gr.Gallery(
label="Results",
format="png",
show_label=False,
columns=2,
height=600,
preview=True,
)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=30,
step=0.5,
value=50,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
furniture_image,
room_image,
prompt,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
],
outputs=[results, seed],
)
demo.launch()
|