import os
import yt_dlp
import torch
import gradio as gr
from transformers import pipeline
from huggingface_hub import model_info
# See available models at https://github.com/biodatlab/thonburian-whisper
MODEL_NAME = "biodatlab/distill-whisper-th-large-v3" # specify the model name here
lang = "th"
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
def transcribe(microphone, file_upload):
warn_output = ""
if microphone and file_upload:
warn_output = (
"WARNING: You've uploaded an audio file and used the microphone. "
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
)
file = microphone
elif microphone:
file = microphone
elif file_upload:
file = file_upload
else:
return "ERROR: You have to either use the microphone or upload an audio file"
text = pipe(file, generate_kwargs={"language":"<|th|>", "task":"transcribe"}, batch_size=16)["text"]
return warn_output + text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'
'
"
"
)
return HTML_str
def yt_transcribe(yt_url):
try:
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'outtmpl': 'audio.%(ext)s',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(yt_url, download=True)
video_id = info['id']
html_embed_str = _return_yt_html_embed(video_id)
text = pipe("audio.mp3", generate_kwargs={"language":"<|th|>", "task":"transcribe"}, batch_size=16)["text"]
# Clean up the downloaded file
os.remove("audio.mp3")
return html_embed_str, text
except Exception as e:
return f"Error: {str(e)}", "An error occurred while processing the YouTube video."
with gr.Blocks() as demo:
gr.Markdown("# Thonburian Whisper Demo 🇹ðŸ‡")
gr.Image(value="thonburian-whisper-logo.png", show_label=False, container=False, width=400)
with gr.Tab("Transcribe Audio"):
gr.Markdown(
f"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the fine-tuned"
f" checkpoint [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
f" of arbitrary length."
)
with gr.Row():
with gr.Column():
audio_mic = gr.Audio(sources=["microphone"], type="filepath", label="Microphone Input")
audio_file = gr.Audio(sources=["upload"], type="filepath", label="Audio File Upload")
with gr.Column():
text_output = gr.Textbox(label="Transcription Output", lines=3)
transcribe_btn = gr.Button("Transcribe")
transcribe_btn.click(fn=transcribe, inputs=[audio_mic, audio_file], outputs=text_output)
with gr.Tab("Transcribe YouTube"):
gr.Markdown(
f"Transcribe long-form YouTube videos with the click of a button! Demo uses the fine-tuned checkpoint:"
f" [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of"
f" arbitrary length."
)
with gr.Row():
with gr.Column():
yt_url_input = gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
with gr.Column():
yt_html_output = gr.HTML(label="Video")
yt_text_output = gr.Textbox(label="Transcription Output")
yt_transcribe_btn = gr.Button("Transcribe YouTube Video")
yt_transcribe_btn.click(fn=yt_transcribe, inputs=yt_url_input, outputs=[yt_html_output, yt_text_output])
if __name__ == "__main__":
demo.queue().launch()