cryplish / multi_crypto.py
bintangyosua's picture
Upload 7 files
ccd9626 verified
raw
history blame
6.18 kB
import marimo
__generated_with = "0.9.15"
app = marimo.App(width="medium")
@app.cell(hide_code=True)
def __(mo):
mo.md(r"""# Cryptocurrency Minuet Dashboard""")
return
@app.cell(hide_code=True)
def __():
import marimo as mo
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import yfinance as yf
import mplfinance as mpf
import altair as alt
from datetime import date, timedelta, datetime
from sklearn.preprocessing import MinMaxScaler
return (
MinMaxScaler,
alt,
date,
datetime,
mo,
mpf,
np,
pd,
plt,
sns,
timedelta,
yf,
)
@app.cell(hide_code=True)
def __(datetime, timedelta, yf):
tickers = [f'{ticker}-USD' for ticker in [
'BTC', 'ETH', 'AR', 'SOL', 'ADA', 'XMR',
'DOGE', 'SHIB', 'PEPE24478', 'BNB', 'AVAX',
]]
yesterday = (datetime.now() - timedelta(days=1)).strftime('%Y-%m-%d')
data = yf.download(tickers, start=yesterday, interval='5m')
closes = data['Close']
return closes, data, tickers, yesterday
@app.cell(hide_code=True)
def __(closes):
highest_percentage_change = {}
for ticker in closes.columns:
# Group by day and calculate min and max within the day
daily_high = closes[ticker].resample('D').max()
daily_low = closes[ticker].resample('D').min()
# Calculate percentage change
daily_percentage_change = ((daily_high - daily_low) / daily_low) * 100
# Get the highest percentage change within the day
highest_percentage_change[ticker] = daily_percentage_change.max()
return (
daily_high,
daily_low,
daily_percentage_change,
highest_percentage_change,
ticker,
)
@app.cell(hide_code=True)
def __(mo):
mo.md("""## Highest Returns in the since Yesterday""")
return
@app.cell(hide_code=True)
def __(highest_percentage_change, mo, tickers):
def show_highest_percentage(ticker):
percentage = highest_percentage_change[ticker]
up = 'success' if percentage > 0 else 'danger'
percentage_text = '%.2f%%' % percentage if percentage is not None else 'N/A'
return mo.callout(value=f'{ticker} {percentage_text}', kind=up)
# Calculate and sort percentage changes
highest_percentage_sorted = sorted(highest_percentage_change.items(), key=lambda x: x[1], reverse=True)
highest, second_highest = highest_percentage_sorted[0], highest_percentage_sorted[1]
lowest, second_lowest = highest_percentage_sorted[-1], highest_percentage_sorted[-2]
# Generate markdown explanations
callouts_length = int(len(tickers) / 2)
top_callout = mo.md(f"""
### Overview of Highest and Lowest Daily Percentage Changes
The **highest daily percentage change** was recorded by `{highest[0]}` at {highest[1]:.2f}%. The **second highest** was `{second_highest[0]}` with a change of {second_highest[1]:.2f}%.
The **lowest daily percentage change** occurred for `{lowest[0]}` at {lowest[1]:.2f}%. The **second lowest** was `{second_lowest[0]}` with a change of {second_lowest[1]:.2f}%.
""")
callouts_top = mo.hstack([show_highest_percentage(ticker) for ticker in tickers[:callouts_length]])
callouts_bottom = mo.hstack([show_highest_percentage(ticker) for ticker in tickers[callouts_length:]])
# mo.vstack([top_callout, callouts_top, callouts_bottom], align='start', heights='equal')
return (
callouts_bottom,
callouts_length,
callouts_top,
highest,
highest_percentage_sorted,
lowest,
second_highest,
second_lowest,
show_highest_percentage,
top_callout,
)
@app.cell(hide_code=True)
def __(top_callout):
top_callout
return
@app.cell(hide_code=True)
def __(callouts_top):
callouts_top
return
@app.cell(hide_code=True)
def __(callouts_bottom):
callouts_bottom
return
@app.cell(hide_code=True)
def __(mo):
mo.md(r"""## Log Returns Correlation""")
return
@app.cell(hide_code=True)
def __(closes, mo, np):
# Calculate log returns and correlation matrix
log_returns = np.log(closes / closes.shift(1))
correlation_matrix = log_returns.corr()
# Identify the highest and lowest correlations
highest_corr = correlation_matrix.unstack().sort_values(ascending=False).drop_duplicates().iloc[1]
lowest_corr = correlation_matrix.unstack().sort_values().drop_duplicates().iloc[0]
mo.md(f"""
### Highest Correlation\n\nThe highest correlation is between `{highest_corr}` and `{highest_corr}` with a value of **{highest_corr:.2f}**, indicating a strong positive relationship. This suggests that these two assets move similarly over the selected period.\n
### Lowest Correlation\n\nThe lowest correlation is between `{lowest_corr}` and `{lowest_corr}` with a value of **{lowest_corr:.2f}**, indicating a weak or almost no relationship. These assets may provide diversification benefits in a portfolio.
### Additional Insights
- **High Positive Correlations**: Assets with high correlations tend to respond similarly to market events, which can be useful for **trend-following strategies**.
- **Low or Negative Correlations**: Assets with low or negative correlations might help reduce overall portfolio risk, making them useful for **diversification**.
- **Portfolio Strategy**: If you're seeking to **balance risk**, consider assets with lower correlations, while highly correlated assets can be beneficial for **momentum-based** portfolios.
""")
return correlation_matrix, highest_corr, log_returns, lowest_corr
@app.cell
def __(log_returns, plt, sns):
plt.figure(figsize=(6, 5))
sns.heatmap(log_returns.corr(), cmap="YlGnBu", annot=True)
plt.gca()
return
@app.cell
def __():
return
@app.cell
def __():
return
if __name__ == "__main__":
app.run()