Spaces:
Running
on
Zero
Running
on
Zero
PseudoTerminal X
commited on
Create pipeline.py
Browse files- pipeline.py +1299 -0
pipeline.py
ADDED
@@ -0,0 +1,1299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import html
|
16 |
+
import inspect
|
17 |
+
import re
|
18 |
+
import urllib.parse as ul
|
19 |
+
from typing import Callable, List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
from transformers import T5EncoderModel, T5Tokenizer
|
23 |
+
|
24 |
+
from diffusers.image_processor import PixArtImageProcessor, PipelineImageInput
|
25 |
+
from diffusers.models import AutoencoderKL, PixArtTransformer2DModel
|
26 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
27 |
+
from diffusers.utils import (
|
28 |
+
BACKENDS_MAPPING,
|
29 |
+
deprecate,
|
30 |
+
is_bs4_available,
|
31 |
+
is_ftfy_available,
|
32 |
+
logging,
|
33 |
+
replace_example_docstring,
|
34 |
+
)
|
35 |
+
from diffusers.utils.torch_utils import randn_tensor
|
36 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
37 |
+
from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import (
|
38 |
+
ASPECT_RATIO_256_BIN,
|
39 |
+
ASPECT_RATIO_512_BIN,
|
40 |
+
ASPECT_RATIO_1024_BIN,
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
45 |
+
def retrieve_latents(
|
46 |
+
encoder_output: torch.Tensor,
|
47 |
+
generator: Optional[torch.Generator] = None,
|
48 |
+
sample_mode: str = "sample",
|
49 |
+
):
|
50 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
51 |
+
return encoder_output.latent_dist.sample(generator)
|
52 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
53 |
+
return encoder_output.latent_dist.mode()
|
54 |
+
elif hasattr(encoder_output, "latents"):
|
55 |
+
return encoder_output.latents
|
56 |
+
else:
|
57 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
58 |
+
|
59 |
+
|
60 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
61 |
+
|
62 |
+
if is_bs4_available():
|
63 |
+
from bs4 import BeautifulSoup
|
64 |
+
|
65 |
+
if is_ftfy_available():
|
66 |
+
import ftfy
|
67 |
+
|
68 |
+
def debug_print(message: str):
|
69 |
+
#print(message)
|
70 |
+
pass
|
71 |
+
|
72 |
+
ASPECT_RATIO_2048_BIN = {
|
73 |
+
"0.25": [1024.0, 4096.0],
|
74 |
+
"0.26": [1024.0, 3968.0],
|
75 |
+
"0.27": [1024.0, 3840.0],
|
76 |
+
"0.28": [1024.0, 3712.0],
|
77 |
+
"0.32": [1152.0, 3584.0],
|
78 |
+
"0.33": [1152.0, 3456.0],
|
79 |
+
"0.35": [1152.0, 3328.0],
|
80 |
+
"0.4": [1280.0, 3200.0],
|
81 |
+
"0.42": [1280.0, 3072.0],
|
82 |
+
"0.48": [1408.0, 2944.0],
|
83 |
+
"0.5": [1408.0, 2816.0],
|
84 |
+
"0.52": [1408.0, 2688.0],
|
85 |
+
"0.57": [1536.0, 2688.0],
|
86 |
+
"0.6": [1536.0, 2560.0],
|
87 |
+
"0.68": [1664.0, 2432.0],
|
88 |
+
"0.72": [1664.0, 2304.0],
|
89 |
+
"0.78": [1792.0, 2304.0],
|
90 |
+
"0.82": [1792.0, 2176.0],
|
91 |
+
"0.88": [1920.0, 2176.0],
|
92 |
+
"0.94": [1920.0, 2048.0],
|
93 |
+
"1.0": [2048.0, 2048.0],
|
94 |
+
"1.07": [2048.0, 1920.0],
|
95 |
+
"1.13": [2176.0, 1920.0],
|
96 |
+
"1.21": [2176.0, 1792.0],
|
97 |
+
"1.29": [2304.0, 1792.0],
|
98 |
+
"1.38": [2304.0, 1664.0],
|
99 |
+
"1.46": [2432.0, 1664.0],
|
100 |
+
"1.67": [2560.0, 1536.0],
|
101 |
+
"1.75": [2688.0, 1536.0],
|
102 |
+
"2.0": [2816.0, 1408.0],
|
103 |
+
"2.09": [2944.0, 1408.0],
|
104 |
+
"2.4": [3072.0, 1280.0],
|
105 |
+
"2.5": [3200.0, 1280.0],
|
106 |
+
"2.89": [3328.0, 1152.0],
|
107 |
+
"3.0": [3456.0, 1152.0],
|
108 |
+
"3.11": [3584.0, 1152.0],
|
109 |
+
"3.62": [3712.0, 1024.0],
|
110 |
+
"3.75": [3840.0, 1024.0],
|
111 |
+
"3.88": [3968.0, 1024.0],
|
112 |
+
"4.0": [4096.0, 1024.0],
|
113 |
+
}
|
114 |
+
|
115 |
+
|
116 |
+
EXAMPLE_DOC_STRING = """
|
117 |
+
Examples:
|
118 |
+
```py
|
119 |
+
>>> import torch
|
120 |
+
>>> from diffusers import PixArtSigmaPipeline
|
121 |
+
|
122 |
+
>>> # You can replace the checkpoint id with "PixArt-alpha/PixArt-Sigma-XL-2-512-MS" too.
|
123 |
+
>>> pipe = PixArtSigmaPipeline.from_pretrained(
|
124 |
+
... "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", torch_dtype=torch.float16
|
125 |
+
... )
|
126 |
+
>>> # Enable memory optimizations.
|
127 |
+
>>> # pipe.enable_model_cpu_offload()
|
128 |
+
|
129 |
+
>>> prompt = "A small cactus with a happy face in the Sahara desert."
|
130 |
+
>>> image = pipe(prompt).images[0]
|
131 |
+
```
|
132 |
+
"""
|
133 |
+
|
134 |
+
|
135 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
136 |
+
def retrieve_timesteps(
|
137 |
+
scheduler,
|
138 |
+
num_inference_steps: Optional[int] = None,
|
139 |
+
device: Optional[Union[str, torch.device]] = None,
|
140 |
+
timesteps: Optional[List[int]] = None,
|
141 |
+
sigmas: Optional[List[float]] = None,
|
142 |
+
**kwargs,
|
143 |
+
):
|
144 |
+
"""
|
145 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
146 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
147 |
+
|
148 |
+
Args:
|
149 |
+
scheduler (`SchedulerMixin`):
|
150 |
+
The scheduler to get timesteps from.
|
151 |
+
num_inference_steps (`int`):
|
152 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
153 |
+
must be `None`.
|
154 |
+
device (`str` or `torch.device`, *optional*):
|
155 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
156 |
+
timesteps (`List[int]`, *optional*):
|
157 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
158 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
159 |
+
sigmas (`List[float]`, *optional*):
|
160 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
161 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
162 |
+
|
163 |
+
Returns:
|
164 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
165 |
+
second element is the number of inference steps.
|
166 |
+
"""
|
167 |
+
if timesteps is not None and sigmas is not None:
|
168 |
+
raise ValueError(
|
169 |
+
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
|
170 |
+
)
|
171 |
+
if timesteps is not None:
|
172 |
+
accepts_timesteps = "timesteps" in set(
|
173 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
174 |
+
)
|
175 |
+
if not accepts_timesteps:
|
176 |
+
raise ValueError(
|
177 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
178 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
179 |
+
)
|
180 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
181 |
+
timesteps = scheduler.timesteps
|
182 |
+
num_inference_steps = len(timesteps)
|
183 |
+
elif sigmas is not None:
|
184 |
+
accept_sigmas = "sigmas" in set(
|
185 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
186 |
+
)
|
187 |
+
if not accept_sigmas:
|
188 |
+
raise ValueError(
|
189 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
190 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
191 |
+
)
|
192 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
193 |
+
timesteps = scheduler.timesteps
|
194 |
+
num_inference_steps = len(timesteps)
|
195 |
+
else:
|
196 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
197 |
+
timesteps = scheduler.timesteps
|
198 |
+
return timesteps, num_inference_steps
|
199 |
+
|
200 |
+
|
201 |
+
class PixArtSigmaPipeline(DiffusionPipeline):
|
202 |
+
r"""
|
203 |
+
Pipeline for text-to-image generation using PixArt-Sigma.
|
204 |
+
"""
|
205 |
+
|
206 |
+
bad_punct_regex = re.compile(
|
207 |
+
r"["
|
208 |
+
+ "#®•©™&@·º½¾¿¡§~"
|
209 |
+
+ r"\)"
|
210 |
+
+ r"\("
|
211 |
+
+ r"\]"
|
212 |
+
+ r"\["
|
213 |
+
+ r"\}"
|
214 |
+
+ r"\{"
|
215 |
+
+ r"\|"
|
216 |
+
+ "\\"
|
217 |
+
+ r"\/"
|
218 |
+
+ r"\*"
|
219 |
+
+ r"]{1,}"
|
220 |
+
) # noqa
|
221 |
+
|
222 |
+
_optional_components = ["tokenizer", "text_encoder"]
|
223 |
+
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
224 |
+
|
225 |
+
def __init__(
|
226 |
+
self,
|
227 |
+
tokenizer: T5Tokenizer,
|
228 |
+
text_encoder: T5EncoderModel,
|
229 |
+
vae: AutoencoderKL,
|
230 |
+
transformer: PixArtTransformer2DModel,
|
231 |
+
scheduler: KarrasDiffusionSchedulers,
|
232 |
+
):
|
233 |
+
super().__init__()
|
234 |
+
|
235 |
+
self.register_modules(
|
236 |
+
tokenizer=tokenizer,
|
237 |
+
text_encoder=text_encoder,
|
238 |
+
vae=vae,
|
239 |
+
transformer=transformer,
|
240 |
+
scheduler=scheduler,
|
241 |
+
)
|
242 |
+
|
243 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
244 |
+
self.image_processor = PixArtImageProcessor(
|
245 |
+
vae_scale_factor=self.vae_scale_factor
|
246 |
+
)
|
247 |
+
|
248 |
+
def get_timesteps(
|
249 |
+
self, num_inference_steps, strength, device, denoising_start=None
|
250 |
+
):
|
251 |
+
# get the original timestep using init_timestep
|
252 |
+
if denoising_start is None and strength is not None:
|
253 |
+
init_timestep = min(
|
254 |
+
int(num_inference_steps * strength), num_inference_steps
|
255 |
+
)
|
256 |
+
debug_print(f"Init timestep: {init_timestep}")
|
257 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
258 |
+
debug_print(
|
259 |
+
f"t_start = max({num_inference_steps} - {init_timestep}, 0) = {t_start}"
|
260 |
+
)
|
261 |
+
else:
|
262 |
+
debug_print(f"denoising_start: {denoising_start}")
|
263 |
+
t_start = 0
|
264 |
+
|
265 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
266 |
+
# Strength is irrelevant if we directly request a timestep to start at;
|
267 |
+
# that is, strength is determined by the denoising_start instead.
|
268 |
+
if denoising_start is not None:
|
269 |
+
discrete_timestep_cutoff = int(
|
270 |
+
round(
|
271 |
+
self.scheduler.config.num_train_timesteps
|
272 |
+
- (denoising_start * self.scheduler.config.num_train_timesteps)
|
273 |
+
)
|
274 |
+
)
|
275 |
+
|
276 |
+
num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
|
277 |
+
if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
|
278 |
+
# if the scheduler is a 2nd order scheduler we might have to do +1
|
279 |
+
# because `num_inference_steps` might be even given that every timestep
|
280 |
+
# (except the highest one) is duplicated. If `num_inference_steps` is even it would
|
281 |
+
# mean that we cut the timesteps in the middle of the denoising step
|
282 |
+
# (between 1st and 2nd derivative) which leads to incorrect results. By adding 1
|
283 |
+
# we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
|
284 |
+
num_inference_steps = num_inference_steps + 1
|
285 |
+
|
286 |
+
# because t_n+1 >= t_n, we slice the timesteps starting from the end
|
287 |
+
timesteps = timesteps[-num_inference_steps:]
|
288 |
+
return timesteps, num_inference_steps
|
289 |
+
|
290 |
+
return timesteps, num_inference_steps - t_start
|
291 |
+
|
292 |
+
# Copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.PixArtAlphaPipeline.encode_prompt with 120->300
|
293 |
+
def encode_prompt(
|
294 |
+
self,
|
295 |
+
prompt: Union[str, List[str]],
|
296 |
+
do_classifier_free_guidance: bool = True,
|
297 |
+
negative_prompt: str = "",
|
298 |
+
num_images_per_prompt: int = 1,
|
299 |
+
device: Optional[torch.device] = None,
|
300 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
301 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
302 |
+
prompt_attention_mask: Optional[torch.Tensor] = None,
|
303 |
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
304 |
+
clean_caption: bool = False,
|
305 |
+
max_sequence_length: int = 300,
|
306 |
+
**kwargs,
|
307 |
+
):
|
308 |
+
r"""
|
309 |
+
Encodes the prompt into text encoder hidden states.
|
310 |
+
|
311 |
+
Args:
|
312 |
+
prompt (`str` or `List[str]`, *optional*):
|
313 |
+
prompt to be encoded
|
314 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
315 |
+
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
|
316 |
+
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
|
317 |
+
PixArt-Alpha, this should be "".
|
318 |
+
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
319 |
+
whether to use classifier free guidance or not
|
320 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
321 |
+
number of images that should be generated per prompt
|
322 |
+
device: (`torch.device`, *optional*):
|
323 |
+
torch device to place the resulting embeddings on
|
324 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
325 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
326 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
327 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
328 |
+
Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the ""
|
329 |
+
string.
|
330 |
+
clean_caption (`bool`, defaults to `False`):
|
331 |
+
If `True`, the function will preprocess and clean the provided caption before encoding.
|
332 |
+
max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
|
333 |
+
"""
|
334 |
+
|
335 |
+
if "mask_feature" in kwargs:
|
336 |
+
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
|
337 |
+
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
|
338 |
+
|
339 |
+
if device is None:
|
340 |
+
device = self._execution_device
|
341 |
+
|
342 |
+
if prompt is not None and isinstance(prompt, str):
|
343 |
+
batch_size = 1
|
344 |
+
elif prompt is not None and isinstance(prompt, list):
|
345 |
+
batch_size = len(prompt)
|
346 |
+
else:
|
347 |
+
batch_size = prompt_embeds.shape[0]
|
348 |
+
|
349 |
+
# See Section 3.1. of the paper.
|
350 |
+
max_length = max_sequence_length
|
351 |
+
|
352 |
+
if prompt_embeds is None:
|
353 |
+
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
|
354 |
+
text_inputs = self.tokenizer(
|
355 |
+
prompt,
|
356 |
+
padding="max_length",
|
357 |
+
max_length=max_length,
|
358 |
+
truncation=True,
|
359 |
+
add_special_tokens=True,
|
360 |
+
return_tensors="pt",
|
361 |
+
)
|
362 |
+
text_input_ids = text_inputs.input_ids
|
363 |
+
untruncated_ids = self.tokenizer(
|
364 |
+
prompt, padding="longest", return_tensors="pt"
|
365 |
+
).input_ids
|
366 |
+
|
367 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[
|
368 |
+
-1
|
369 |
+
] and not torch.equal(text_input_ids, untruncated_ids):
|
370 |
+
removed_text = self.tokenizer.batch_decode(
|
371 |
+
untruncated_ids[:, max_length - 1 : -1]
|
372 |
+
)
|
373 |
+
logger.warning(
|
374 |
+
"The following part of your input was truncated because T5 can only handle sequences up to"
|
375 |
+
f" {max_length} tokens: {removed_text}"
|
376 |
+
)
|
377 |
+
|
378 |
+
prompt_attention_mask = text_inputs.attention_mask
|
379 |
+
prompt_attention_mask = prompt_attention_mask.to(device)
|
380 |
+
|
381 |
+
prompt_embeds = self.text_encoder(
|
382 |
+
text_input_ids.to(device), attention_mask=prompt_attention_mask
|
383 |
+
)
|
384 |
+
prompt_embeds = prompt_embeds[0]
|
385 |
+
|
386 |
+
if self.text_encoder is not None:
|
387 |
+
dtype = self.text_encoder.dtype
|
388 |
+
elif self.transformer is not None:
|
389 |
+
dtype = self.transformer.dtype
|
390 |
+
else:
|
391 |
+
dtype = None
|
392 |
+
|
393 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
394 |
+
|
395 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
396 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
397 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
398 |
+
prompt_embeds = prompt_embeds.view(
|
399 |
+
bs_embed * num_images_per_prompt, seq_len, -1
|
400 |
+
)
|
401 |
+
prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1)
|
402 |
+
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
403 |
+
|
404 |
+
# get unconditional embeddings for classifier free guidance
|
405 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
406 |
+
uncond_tokens = (
|
407 |
+
[negative_prompt] * batch_size
|
408 |
+
if isinstance(negative_prompt, str)
|
409 |
+
else negative_prompt
|
410 |
+
)
|
411 |
+
uncond_tokens = self._text_preprocessing(
|
412 |
+
uncond_tokens, clean_caption=clean_caption
|
413 |
+
)
|
414 |
+
max_length = prompt_embeds.shape[1]
|
415 |
+
uncond_input = self.tokenizer(
|
416 |
+
uncond_tokens,
|
417 |
+
padding="max_length",
|
418 |
+
max_length=max_length,
|
419 |
+
truncation=True,
|
420 |
+
return_attention_mask=True,
|
421 |
+
add_special_tokens=True,
|
422 |
+
return_tensors="pt",
|
423 |
+
)
|
424 |
+
negative_prompt_attention_mask = uncond_input.attention_mask
|
425 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.to(device)
|
426 |
+
|
427 |
+
negative_prompt_embeds = self.text_encoder(
|
428 |
+
uncond_input.input_ids.to(device),
|
429 |
+
attention_mask=negative_prompt_attention_mask,
|
430 |
+
)
|
431 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
432 |
+
|
433 |
+
if do_classifier_free_guidance:
|
434 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
435 |
+
seq_len = negative_prompt_embeds.shape[1]
|
436 |
+
|
437 |
+
negative_prompt_embeds = negative_prompt_embeds.to(
|
438 |
+
dtype=dtype, device=device
|
439 |
+
)
|
440 |
+
|
441 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
442 |
+
1, num_images_per_prompt, 1
|
443 |
+
)
|
444 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
445 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
446 |
+
)
|
447 |
+
|
448 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.view(
|
449 |
+
bs_embed, -1
|
450 |
+
)
|
451 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(
|
452 |
+
num_images_per_prompt, 1
|
453 |
+
)
|
454 |
+
else:
|
455 |
+
negative_prompt_embeds = None
|
456 |
+
negative_prompt_attention_mask = None
|
457 |
+
|
458 |
+
return (
|
459 |
+
prompt_embeds,
|
460 |
+
prompt_attention_mask,
|
461 |
+
negative_prompt_embeds,
|
462 |
+
negative_prompt_attention_mask,
|
463 |
+
)
|
464 |
+
|
465 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
466 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
467 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
468 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
469 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
470 |
+
# and should be between [0, 1]
|
471 |
+
|
472 |
+
accepts_eta = "eta" in set(
|
473 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
474 |
+
)
|
475 |
+
extra_step_kwargs = {}
|
476 |
+
if accepts_eta:
|
477 |
+
extra_step_kwargs["eta"] = eta
|
478 |
+
|
479 |
+
# check if the scheduler accepts generator
|
480 |
+
accepts_generator = "generator" in set(
|
481 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
482 |
+
)
|
483 |
+
if accepts_generator:
|
484 |
+
extra_step_kwargs["generator"] = generator
|
485 |
+
return extra_step_kwargs
|
486 |
+
|
487 |
+
# Copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.PixArtAlphaPipeline.check_inputs
|
488 |
+
def check_inputs(
|
489 |
+
self,
|
490 |
+
prompt,
|
491 |
+
height,
|
492 |
+
width,
|
493 |
+
strength,
|
494 |
+
num_inference_steps,
|
495 |
+
negative_prompt,
|
496 |
+
callback_steps,
|
497 |
+
prompt_embeds=None,
|
498 |
+
negative_prompt_embeds=None,
|
499 |
+
prompt_attention_mask=None,
|
500 |
+
negative_prompt_attention_mask=None,
|
501 |
+
):
|
502 |
+
if strength is None:
|
503 |
+
if height % 8 != 0 or width % 8 != 0:
|
504 |
+
raise ValueError(
|
505 |
+
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
506 |
+
)
|
507 |
+
else:
|
508 |
+
if strength < 0 or strength > 1:
|
509 |
+
raise ValueError(
|
510 |
+
f"The value of strength should in [0.0, 1.0] but is {strength}"
|
511 |
+
)
|
512 |
+
if num_inference_steps is None:
|
513 |
+
raise ValueError("`num_inference_steps` cannot be None.")
|
514 |
+
elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
|
515 |
+
raise ValueError(
|
516 |
+
f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
|
517 |
+
f" {type(num_inference_steps)}."
|
518 |
+
)
|
519 |
+
if (callback_steps is None) or (
|
520 |
+
callback_steps is not None
|
521 |
+
and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
522 |
+
):
|
523 |
+
raise ValueError(
|
524 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
525 |
+
f" {type(callback_steps)}."
|
526 |
+
)
|
527 |
+
|
528 |
+
if prompt is not None and prompt_embeds is not None:
|
529 |
+
prompt = None
|
530 |
+
|
531 |
+
if prompt is None and prompt_embeds is None:
|
532 |
+
raise ValueError(
|
533 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
534 |
+
)
|
535 |
+
elif prompt is not None and (
|
536 |
+
not isinstance(prompt, str) and not isinstance(prompt, list)
|
537 |
+
):
|
538 |
+
raise ValueError(
|
539 |
+
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
540 |
+
)
|
541 |
+
|
542 |
+
if prompt is not None and negative_prompt_embeds is not None:
|
543 |
+
raise ValueError(
|
544 |
+
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
545 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
546 |
+
)
|
547 |
+
|
548 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
549 |
+
negative_prompt = None
|
550 |
+
|
551 |
+
if prompt_embeds is not None and prompt_attention_mask is None:
|
552 |
+
raise ValueError(
|
553 |
+
"Must provide `prompt_attention_mask` when specifying `prompt_embeds`."
|
554 |
+
)
|
555 |
+
|
556 |
+
if (
|
557 |
+
negative_prompt_embeds is not None
|
558 |
+
and negative_prompt_attention_mask is None
|
559 |
+
):
|
560 |
+
raise ValueError(
|
561 |
+
"Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`."
|
562 |
+
)
|
563 |
+
|
564 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
565 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
566 |
+
raise ValueError(
|
567 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
568 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
569 |
+
f" {negative_prompt_embeds.shape}."
|
570 |
+
)
|
571 |
+
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
|
572 |
+
raise ValueError(
|
573 |
+
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
|
574 |
+
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
|
575 |
+
f" {negative_prompt_attention_mask.shape}."
|
576 |
+
)
|
577 |
+
|
578 |
+
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
|
579 |
+
def _text_preprocessing(self, text, clean_caption=False):
|
580 |
+
if clean_caption and not is_bs4_available():
|
581 |
+
logger.warning(
|
582 |
+
BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`")
|
583 |
+
)
|
584 |
+
logger.warning("Setting `clean_caption` to False...")
|
585 |
+
clean_caption = False
|
586 |
+
|
587 |
+
if clean_caption and not is_ftfy_available():
|
588 |
+
logger.warning(
|
589 |
+
BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`")
|
590 |
+
)
|
591 |
+
logger.warning("Setting `clean_caption` to False...")
|
592 |
+
clean_caption = False
|
593 |
+
|
594 |
+
if not isinstance(text, (tuple, list)):
|
595 |
+
text = [text]
|
596 |
+
|
597 |
+
def process(text: str):
|
598 |
+
if clean_caption:
|
599 |
+
text = self._clean_caption(text)
|
600 |
+
text = self._clean_caption(text)
|
601 |
+
else:
|
602 |
+
text = text.lower().strip()
|
603 |
+
return text
|
604 |
+
|
605 |
+
return [process(t) for t in text]
|
606 |
+
|
607 |
+
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
|
608 |
+
def _clean_caption(self, caption):
|
609 |
+
caption = str(caption)
|
610 |
+
caption = ul.unquote_plus(caption)
|
611 |
+
caption = caption.strip().lower()
|
612 |
+
caption = re.sub("<person>", "person", caption)
|
613 |
+
# urls:
|
614 |
+
caption = re.sub(
|
615 |
+
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
616 |
+
"",
|
617 |
+
caption,
|
618 |
+
) # regex for urls
|
619 |
+
caption = re.sub(
|
620 |
+
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
621 |
+
"",
|
622 |
+
caption,
|
623 |
+
) # regex for urls
|
624 |
+
# html:
|
625 |
+
caption = BeautifulSoup(caption, features="html.parser").text
|
626 |
+
|
627 |
+
# @<nickname>
|
628 |
+
caption = re.sub(r"@[\w\d]+\b", "", caption)
|
629 |
+
|
630 |
+
# 31C0—31EF CJK Strokes
|
631 |
+
# 31F0—31FF Katakana Phonetic Extensions
|
632 |
+
# 3200—32FF Enclosed CJK Letters and Months
|
633 |
+
# 3300—33FF CJK Compatibility
|
634 |
+
# 3400—4DBF CJK Unified Ideographs Extension A
|
635 |
+
# 4DC0—4DFF Yijing Hexagram Symbols
|
636 |
+
# 4E00—9FFF CJK Unified Ideographs
|
637 |
+
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
|
638 |
+
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
|
639 |
+
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
|
640 |
+
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
|
641 |
+
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
|
642 |
+
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
|
643 |
+
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
|
644 |
+
#######################################################
|
645 |
+
|
646 |
+
# все виды тире / all types of dash --> "-"
|
647 |
+
caption = re.sub(
|
648 |
+
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
|
649 |
+
"-",
|
650 |
+
caption,
|
651 |
+
)
|
652 |
+
|
653 |
+
# кавычки к одному стандарту
|
654 |
+
caption = re.sub(r"[`´«»“”¨]", '"', caption)
|
655 |
+
caption = re.sub(r"[‘’]", "'", caption)
|
656 |
+
|
657 |
+
# "
|
658 |
+
caption = re.sub(r""?", "", caption)
|
659 |
+
# &
|
660 |
+
caption = re.sub(r"&", "", caption)
|
661 |
+
|
662 |
+
# ip adresses:
|
663 |
+
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
|
664 |
+
|
665 |
+
# article ids:
|
666 |
+
caption = re.sub(r"\d:\d\d\s+$", "", caption)
|
667 |
+
|
668 |
+
# \n
|
669 |
+
caption = re.sub(r"\\n", " ", caption)
|
670 |
+
|
671 |
+
# "#123"
|
672 |
+
caption = re.sub(r"#\d{1,3}\b", "", caption)
|
673 |
+
# "#12345.."
|
674 |
+
caption = re.sub(r"#\d{5,}\b", "", caption)
|
675 |
+
# "123456.."
|
676 |
+
caption = re.sub(r"\b\d{6,}\b", "", caption)
|
677 |
+
# filenames:
|
678 |
+
caption = re.sub(
|
679 |
+
r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption
|
680 |
+
)
|
681 |
+
|
682 |
+
#
|
683 |
+
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
|
684 |
+
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
|
685 |
+
|
686 |
+
caption = re.sub(
|
687 |
+
self.bad_punct_regex, r" ", caption
|
688 |
+
) # ***AUSVERKAUFT***, #AUSVERKAUFT
|
689 |
+
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
|
690 |
+
|
691 |
+
# this-is-my-cute-cat / this_is_my_cute_cat
|
692 |
+
regex2 = re.compile(r"(?:\-|\_)")
|
693 |
+
if len(re.findall(regex2, caption)) > 3:
|
694 |
+
caption = re.sub(regex2, " ", caption)
|
695 |
+
|
696 |
+
caption = ftfy.fix_text(caption)
|
697 |
+
caption = html.unescape(html.unescape(caption))
|
698 |
+
|
699 |
+
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
|
700 |
+
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
|
701 |
+
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
|
702 |
+
|
703 |
+
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
|
704 |
+
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
|
705 |
+
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
|
706 |
+
caption = re.sub(
|
707 |
+
r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption
|
708 |
+
)
|
709 |
+
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
|
710 |
+
|
711 |
+
caption = re.sub(
|
712 |
+
r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption
|
713 |
+
) # j2d1a2a...
|
714 |
+
|
715 |
+
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
|
716 |
+
|
717 |
+
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
|
718 |
+
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
|
719 |
+
caption = re.sub(r"\s+", " ", caption)
|
720 |
+
|
721 |
+
caption.strip()
|
722 |
+
|
723 |
+
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
|
724 |
+
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
|
725 |
+
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
|
726 |
+
caption = re.sub(r"^\.\S+$", "", caption)
|
727 |
+
|
728 |
+
return caption.strip()
|
729 |
+
|
730 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
731 |
+
def prepare_latents(
|
732 |
+
self,
|
733 |
+
batch_size,
|
734 |
+
num_channels_latents,
|
735 |
+
height,
|
736 |
+
width,
|
737 |
+
dtype,
|
738 |
+
device,
|
739 |
+
generator,
|
740 |
+
_latents=None,
|
741 |
+
timestep=None,
|
742 |
+
add_noise=False,
|
743 |
+
image=None,
|
744 |
+
):
|
745 |
+
shape = (
|
746 |
+
batch_size,
|
747 |
+
num_channels_latents,
|
748 |
+
int(height) // self.vae_scale_factor,
|
749 |
+
int(width) // self.vae_scale_factor,
|
750 |
+
)
|
751 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
752 |
+
raise ValueError(
|
753 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
754 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
755 |
+
)
|
756 |
+
|
757 |
+
if _latents is not None:
|
758 |
+
init_latents = _latents.to(device)
|
759 |
+
elif image is None and _latents is None:
|
760 |
+
debug_print("Make random latents tensor")
|
761 |
+
init_latents = randn_tensor(
|
762 |
+
shape, generator=generator, device=device, dtype=dtype
|
763 |
+
)
|
764 |
+
|
765 |
+
latents_mean = latents_std = None
|
766 |
+
if (
|
767 |
+
hasattr(self.vae.config, "latents_mean")
|
768 |
+
and self.vae.config.latents_mean is not None
|
769 |
+
):
|
770 |
+
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
|
771 |
+
if (
|
772 |
+
hasattr(self.vae.config, "latents_std")
|
773 |
+
and self.vae.config.latents_std is not None
|
774 |
+
):
|
775 |
+
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
|
776 |
+
if image is not None and hasattr(image, "shape") and image.shape[1] == 4:
|
777 |
+
debug_print("Received valid latent image input.")
|
778 |
+
init_latents = image
|
779 |
+
|
780 |
+
if init_latents is not None:
|
781 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
782 |
+
debug_print(f"Scaling the initial noise by the std required by the scheduler.")
|
783 |
+
init_latents = init_latents * self.scheduler.init_noise_sigma
|
784 |
+
|
785 |
+
if image is not None and image.shape[1] < 4:
|
786 |
+
debug_print("Received RGB or similar image. Processing..")
|
787 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
788 |
+
if self.vae.config.force_upcast:
|
789 |
+
image = image.float()
|
790 |
+
self.vae.to(dtype=torch.float32)
|
791 |
+
|
792 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
793 |
+
raise ValueError(
|
794 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
795 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
796 |
+
)
|
797 |
+
|
798 |
+
elif isinstance(generator, list):
|
799 |
+
init_latents = [
|
800 |
+
retrieve_latents(
|
801 |
+
self.vae.encode(image[i : i + 1]), generator=generator[i]
|
802 |
+
)
|
803 |
+
for i in range(batch_size)
|
804 |
+
]
|
805 |
+
init_latents = torch.cat(init_latents, dim=0)
|
806 |
+
else:
|
807 |
+
debug_print("Encode image to latents.")
|
808 |
+
init_latents = retrieve_latents(
|
809 |
+
self.vae.encode(image), generator=generator
|
810 |
+
)
|
811 |
+
|
812 |
+
if self.vae.config.force_upcast:
|
813 |
+
self.vae.to(dtype)
|
814 |
+
|
815 |
+
debug_print("Set initial latents..")
|
816 |
+
init_latents = init_latents.to(dtype)
|
817 |
+
if latents_mean is not None and latents_std is not None:
|
818 |
+
debug_print("Scaling latents by mean/std")
|
819 |
+
latents_mean = latents_mean.to(device=device, dtype=dtype)
|
820 |
+
latents_std = latents_std.to(device=device, dtype=dtype)
|
821 |
+
init_latents = (
|
822 |
+
(init_latents - latents_mean)
|
823 |
+
* self.vae.config.scaling_factor
|
824 |
+
/ latents_std
|
825 |
+
)
|
826 |
+
else:
|
827 |
+
debug_print("Scaling latents only by scaling_factor")
|
828 |
+
init_latents = self.vae.config.scaling_factor * init_latents
|
829 |
+
|
830 |
+
if (
|
831 |
+
batch_size > init_latents.shape[0]
|
832 |
+
and batch_size % init_latents.shape[0] == 0
|
833 |
+
):
|
834 |
+
# expand init_latents for batch_size
|
835 |
+
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
836 |
+
init_latents = torch.cat(
|
837 |
+
[init_latents] * additional_image_per_prompt, dim=0
|
838 |
+
)
|
839 |
+
elif (
|
840 |
+
batch_size > init_latents.shape[0]
|
841 |
+
and batch_size % init_latents.shape[0] != 0
|
842 |
+
):
|
843 |
+
raise ValueError(
|
844 |
+
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
845 |
+
)
|
846 |
+
else:
|
847 |
+
init_latents = torch.cat([init_latents], dim=0)
|
848 |
+
|
849 |
+
if (
|
850 |
+
add_noise
|
851 |
+
and timestep is not None
|
852 |
+
and (_latents is not None or image is not None)
|
853 |
+
):
|
854 |
+
shape = init_latents.shape
|
855 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
856 |
+
# get latents
|
857 |
+
debug_print(f"Adding noise to tensor for timestep: {timestep}")
|
858 |
+
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
859 |
+
|
860 |
+
return init_latents
|
861 |
+
|
862 |
+
@property
|
863 |
+
def denoising_start(self):
|
864 |
+
return self._denoising_start
|
865 |
+
|
866 |
+
@property
|
867 |
+
def denoising_end(self):
|
868 |
+
return self._denoising_end
|
869 |
+
|
870 |
+
@property
|
871 |
+
def num_timesteps(self):
|
872 |
+
return self._num_timesteps
|
873 |
+
|
874 |
+
@torch.no_grad()
|
875 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
876 |
+
def __call__(
|
877 |
+
self,
|
878 |
+
prompt: Union[str, List[str]] = None,
|
879 |
+
negative_prompt: str = "",
|
880 |
+
strength: float = None,
|
881 |
+
num_inference_steps: int = 20,
|
882 |
+
timesteps: List[int] = None,
|
883 |
+
sigmas: List[float] = None,
|
884 |
+
denoising_start: Optional[float] = None,
|
885 |
+
denoising_end: Optional[float] = None,
|
886 |
+
guidance_scale: float = 4.5,
|
887 |
+
num_images_per_prompt: Optional[int] = 1,
|
888 |
+
height: Optional[int] = None,
|
889 |
+
width: Optional[int] = None,
|
890 |
+
eta: float = 0.0,
|
891 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
892 |
+
image: Optional[PipelineImageInput] = None,
|
893 |
+
latents: Optional[torch.Tensor] = None,
|
894 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
895 |
+
prompt_attention_mask: Optional[torch.Tensor] = None,
|
896 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
897 |
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
898 |
+
output_type: Optional[str] = "pil",
|
899 |
+
return_dict: bool = True,
|
900 |
+
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
901 |
+
callback_steps: int = 1,
|
902 |
+
clean_caption: bool = True,
|
903 |
+
use_resolution_binning: bool = True,
|
904 |
+
max_sequence_length: int = 300,
|
905 |
+
**kwargs,
|
906 |
+
) -> Union[ImagePipelineOutput, Tuple]:
|
907 |
+
"""
|
908 |
+
Function invoked when calling the pipeline for generation.
|
909 |
+
|
910 |
+
Args:
|
911 |
+
prompt (`str` or `List[str]`, *optional*):
|
912 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
913 |
+
instead.
|
914 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
915 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
916 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
917 |
+
less than `1`).
|
918 |
+
strength (`float`, *optional*, defaults to 0.3):
|
919 |
+
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
|
920 |
+
will be used as a starting point, adding more noise to it the larger the `strength`. The number of
|
921 |
+
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
|
922 |
+
be maximum and the denoising process will run for the full number of iterations specified in
|
923 |
+
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. Note that in the case of
|
924 |
+
`denoising_start` being declared as an integer, the value of `strength` will be ignored.
|
925 |
+
num_inference_steps (`int`, *optional*, defaults to 100):
|
926 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
927 |
+
expense of slower inference.
|
928 |
+
denoising_start (`float`, *optional*):
|
929 |
+
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
|
930 |
+
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
|
931 |
+
it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
|
932 |
+
strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
|
933 |
+
is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refine Image
|
934 |
+
Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality).
|
935 |
+
denoising_end (`float`, *optional*):
|
936 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
937 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
938 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
939 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
940 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
941 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
942 |
+
timesteps (`List[int]`, *optional*):
|
943 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
944 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
945 |
+
passed will be used. Must be in descending order.
|
946 |
+
sigmas (`List[float]`, *optional*):
|
947 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
948 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
949 |
+
will be used.
|
950 |
+
guidance_scale (`float`, *optional*, defaults to 4.5):
|
951 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
952 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
953 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
954 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
955 |
+
usually at the expense of lower image quality.
|
956 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
957 |
+
The number of images to generate per prompt.
|
958 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
959 |
+
The height in pixels of the generated image.
|
960 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
961 |
+
The width in pixels of the generated image.
|
962 |
+
eta (`float`, *optional*, defaults to 0.0):
|
963 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
964 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
965 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
966 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
967 |
+
to make generation deterministic.
|
968 |
+
latents (`torch.Tensor`, *optional*):
|
969 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
970 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
971 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
972 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
973 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
974 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
975 |
+
prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
|
976 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
977 |
+
Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
|
978 |
+
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
|
979 |
+
negative_prompt_attention_mask (`torch.Tensor`, *optional*):
|
980 |
+
Pre-generated attention mask for negative text embeddings.
|
981 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
982 |
+
The output format of the generate image. Choose between
|
983 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
984 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
985 |
+
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
986 |
+
callback (`Callable`, *optional*):
|
987 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
988 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
989 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
990 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
991 |
+
called at every step.
|
992 |
+
clean_caption (`bool`, *optional*, defaults to `True`):
|
993 |
+
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
|
994 |
+
be installed. If the dependencies are not installed, the embeddings will be created from the raw
|
995 |
+
prompt.
|
996 |
+
use_resolution_binning (`bool` defaults to `True`):
|
997 |
+
If set to `True`, the requested height and width are first mapped to the closest resolutions using
|
998 |
+
`ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
|
999 |
+
the requested resolution. Useful for generating non-square images.
|
1000 |
+
max_sequence_length (`int` defaults to 300): Maximum sequence length to use with the `prompt`.
|
1001 |
+
|
1002 |
+
Examples:
|
1003 |
+
|
1004 |
+
Returns:
|
1005 |
+
[`~pipelines.ImagePipelineOutput`] or `tuple`:
|
1006 |
+
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
|
1007 |
+
returned where the first element is a list with the generated images
|
1008 |
+
"""
|
1009 |
+
# 1. Check inputs. Raise error if not correct
|
1010 |
+
height = height or self.transformer.config.sample_size * self.vae_scale_factor
|
1011 |
+
width = width or self.transformer.config.sample_size * self.vae_scale_factor
|
1012 |
+
if use_resolution_binning:
|
1013 |
+
if self.transformer.config.sample_size == 256:
|
1014 |
+
aspect_ratio_bin = ASPECT_RATIO_2048_BIN
|
1015 |
+
elif self.transformer.config.sample_size == 128:
|
1016 |
+
aspect_ratio_bin = ASPECT_RATIO_1024_BIN
|
1017 |
+
elif self.transformer.config.sample_size == 64:
|
1018 |
+
aspect_ratio_bin = ASPECT_RATIO_512_BIN
|
1019 |
+
elif self.transformer.config.sample_size == 32:
|
1020 |
+
aspect_ratio_bin = ASPECT_RATIO_256_BIN
|
1021 |
+
else:
|
1022 |
+
raise ValueError("Invalid sample size")
|
1023 |
+
orig_height, orig_width = height, width
|
1024 |
+
height, width = self.image_processor.classify_height_width_bin(
|
1025 |
+
height, width, ratios=aspect_ratio_bin
|
1026 |
+
)
|
1027 |
+
|
1028 |
+
self.check_inputs(
|
1029 |
+
prompt,
|
1030 |
+
height,
|
1031 |
+
width,
|
1032 |
+
strength,
|
1033 |
+
num_inference_steps,
|
1034 |
+
negative_prompt,
|
1035 |
+
callback_steps,
|
1036 |
+
prompt_embeds,
|
1037 |
+
negative_prompt_embeds,
|
1038 |
+
prompt_attention_mask,
|
1039 |
+
negative_prompt_attention_mask,
|
1040 |
+
)
|
1041 |
+
|
1042 |
+
# 2. Default height and width to transformer
|
1043 |
+
if prompt is not None and isinstance(prompt, str):
|
1044 |
+
batch_size = 1
|
1045 |
+
elif prompt is not None and isinstance(prompt, list):
|
1046 |
+
batch_size = len(prompt)
|
1047 |
+
else:
|
1048 |
+
batch_size = prompt_embeds.shape[0]
|
1049 |
+
|
1050 |
+
device = self._execution_device
|
1051 |
+
self._denoising_start = denoising_start
|
1052 |
+
self._num_timesteps = num_inference_steps
|
1053 |
+
self._denoising_end = denoising_end
|
1054 |
+
|
1055 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1056 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1057 |
+
# corresponds to doing no classifier free guidance.
|
1058 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
1059 |
+
|
1060 |
+
# 3. Encode input prompt
|
1061 |
+
(
|
1062 |
+
prompt_embeds,
|
1063 |
+
prompt_attention_mask,
|
1064 |
+
negative_prompt_embeds,
|
1065 |
+
negative_prompt_attention_mask,
|
1066 |
+
) = self.encode_prompt(
|
1067 |
+
prompt,
|
1068 |
+
do_classifier_free_guidance,
|
1069 |
+
negative_prompt=negative_prompt,
|
1070 |
+
num_images_per_prompt=num_images_per_prompt,
|
1071 |
+
device=device,
|
1072 |
+
prompt_embeds=prompt_embeds,
|
1073 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1074 |
+
prompt_attention_mask=prompt_attention_mask,
|
1075 |
+
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
1076 |
+
clean_caption=clean_caption,
|
1077 |
+
max_sequence_length=max_sequence_length,
|
1078 |
+
)
|
1079 |
+
if do_classifier_free_guidance:
|
1080 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1081 |
+
prompt_attention_mask = torch.cat(
|
1082 |
+
[negative_prompt_attention_mask, prompt_attention_mask], dim=0
|
1083 |
+
)
|
1084 |
+
|
1085 |
+
# 4. Prepare timesteps
|
1086 |
+
def denoising_value_valid(dnv):
|
1087 |
+
return isinstance(dnv, float) and 0 < dnv < 1
|
1088 |
+
|
1089 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1090 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
1091 |
+
)
|
1092 |
+
|
1093 |
+
# 5. Prepare latents.
|
1094 |
+
if image is not None:
|
1095 |
+
image = self.image_processor.preprocess(image)
|
1096 |
+
image = image.to(device=self.vae.device, dtype=self.vae.dtype)
|
1097 |
+
|
1098 |
+
latent_channels = self.transformer.config.in_channels
|
1099 |
+
latent_timestep = None
|
1100 |
+
if (
|
1101 |
+
denoising_end is not None
|
1102 |
+
or denoising_start is not None
|
1103 |
+
or strength is not None
|
1104 |
+
):
|
1105 |
+
timesteps, num_inference_steps = self.get_timesteps(
|
1106 |
+
num_inference_steps,
|
1107 |
+
strength,
|
1108 |
+
device,
|
1109 |
+
denoising_start=(
|
1110 |
+
self.denoising_start
|
1111 |
+
if denoising_value_valid(self.denoising_start)
|
1112 |
+
else None
|
1113 |
+
),
|
1114 |
+
)
|
1115 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1116 |
+
if latents is not None:
|
1117 |
+
height, width = latents.shape[-2:]
|
1118 |
+
height = height * self.vae_scale_factor
|
1119 |
+
width = width * self.vae_scale_factor
|
1120 |
+
add_noise = (
|
1121 |
+
True
|
1122 |
+
if (
|
1123 |
+
self.denoising_start is None
|
1124 |
+
and (image is not None or latents is not None)
|
1125 |
+
)
|
1126 |
+
else False
|
1127 |
+
)
|
1128 |
+
debug_print(f"Add_noise: {add_noise}")
|
1129 |
+
if latents is None:
|
1130 |
+
debug_print("Prepare latents..")
|
1131 |
+
latents = self.prepare_latents(
|
1132 |
+
batch_size * num_images_per_prompt,
|
1133 |
+
latent_channels,
|
1134 |
+
height,
|
1135 |
+
width,
|
1136 |
+
prompt_embeds.dtype,
|
1137 |
+
device,
|
1138 |
+
generator,
|
1139 |
+
latents,
|
1140 |
+
timestep=latent_timestep,
|
1141 |
+
add_noise=add_noise,
|
1142 |
+
image=image,
|
1143 |
+
)
|
1144 |
+
|
1145 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1146 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1147 |
+
|
1148 |
+
# 6.1 Prepare micro-conditions.
|
1149 |
+
added_cond_kwargs = {"resolution": None, "aspect_ratio": None}
|
1150 |
+
|
1151 |
+
# 7. Denoising loop
|
1152 |
+
num_warmup_steps = max(
|
1153 |
+
len(timesteps) - num_inference_steps * self.scheduler.order, 0
|
1154 |
+
)
|
1155 |
+
if (
|
1156 |
+
self.denoising_end is not None
|
1157 |
+
and self.denoising_start is not None
|
1158 |
+
and denoising_value_valid(self.denoising_end)
|
1159 |
+
and denoising_value_valid(self.denoising_start)
|
1160 |
+
and self.denoising_start >= self.denoising_end
|
1161 |
+
):
|
1162 |
+
raise ValueError(
|
1163 |
+
f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: "
|
1164 |
+
+ f" {self.denoising_end} when using type float."
|
1165 |
+
)
|
1166 |
+
if self.denoising_start is not None:
|
1167 |
+
if denoising_value_valid(self.denoising_start):
|
1168 |
+
discrete_timestep_cutoff = int(
|
1169 |
+
round(
|
1170 |
+
self.scheduler.config.num_train_timesteps
|
1171 |
+
- (denoising_start * self.scheduler.config.num_train_timesteps)
|
1172 |
+
)
|
1173 |
+
)
|
1174 |
+
|
1175 |
+
num_inference_steps = (
|
1176 |
+
(timesteps < discrete_timestep_cutoff).sum().item()
|
1177 |
+
)
|
1178 |
+
debug_print(
|
1179 |
+
f"Beginning inference for stage2 with {num_inference_steps} steps."
|
1180 |
+
)
|
1181 |
+
|
1182 |
+
else:
|
1183 |
+
raise ValueError(
|
1184 |
+
f"`denoising_start` must be a float between 0 and 1: {denoising_start}"
|
1185 |
+
)
|
1186 |
+
if self.denoising_end is not None:
|
1187 |
+
if denoising_value_valid(self.denoising_end):
|
1188 |
+
discrete_timestep_cutoff = int(
|
1189 |
+
round(
|
1190 |
+
self.scheduler.config.num_train_timesteps
|
1191 |
+
- (
|
1192 |
+
self.denoising_end
|
1193 |
+
* self.scheduler.config.num_train_timesteps
|
1194 |
+
)
|
1195 |
+
)
|
1196 |
+
)
|
1197 |
+
num_inference_steps = len(
|
1198 |
+
list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))
|
1199 |
+
)
|
1200 |
+
debug_print(
|
1201 |
+
f"Beginning inference for stage1 with {num_inference_steps} steps."
|
1202 |
+
)
|
1203 |
+
timesteps = timesteps[:num_inference_steps]
|
1204 |
+
else:
|
1205 |
+
raise ValueError(
|
1206 |
+
f"`denoising_end` must be a float between 0 and 1: {denoising_end}"
|
1207 |
+
)
|
1208 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1209 |
+
for i, t in enumerate(timesteps):
|
1210 |
+
latent_model_input = (
|
1211 |
+
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
1212 |
+
)
|
1213 |
+
latent_model_input = self.scheduler.scale_model_input(
|
1214 |
+
latent_model_input, t
|
1215 |
+
)
|
1216 |
+
|
1217 |
+
current_timestep = t
|
1218 |
+
if not torch.is_tensor(current_timestep):
|
1219 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
1220 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
1221 |
+
is_mps = latent_model_input.device.type == "mps"
|
1222 |
+
if isinstance(current_timestep, float):
|
1223 |
+
dtype = torch.float32 if is_mps else torch.float64
|
1224 |
+
else:
|
1225 |
+
dtype = torch.int32 if is_mps else torch.int64
|
1226 |
+
current_timestep = torch.tensor(
|
1227 |
+
[current_timestep],
|
1228 |
+
dtype=dtype,
|
1229 |
+
device=latent_model_input.device,
|
1230 |
+
)
|
1231 |
+
elif len(current_timestep.shape) == 0:
|
1232 |
+
current_timestep = current_timestep[None].to(
|
1233 |
+
latent_model_input.device
|
1234 |
+
)
|
1235 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
1236 |
+
current_timestep = current_timestep.expand(latent_model_input.shape[0])
|
1237 |
+
|
1238 |
+
# predict noise model_output
|
1239 |
+
noise_pred = self.transformer(
|
1240 |
+
latent_model_input.to(
|
1241 |
+
device=self.transformer.device, dtype=self.transformer.dtype
|
1242 |
+
),
|
1243 |
+
encoder_hidden_states=prompt_embeds,
|
1244 |
+
encoder_attention_mask=prompt_attention_mask,
|
1245 |
+
timestep=current_timestep,
|
1246 |
+
added_cond_kwargs=added_cond_kwargs,
|
1247 |
+
return_dict=False,
|
1248 |
+
)[0]
|
1249 |
+
|
1250 |
+
# perform guidance
|
1251 |
+
if do_classifier_free_guidance:
|
1252 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1253 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
1254 |
+
noise_pred_text - noise_pred_uncond
|
1255 |
+
)
|
1256 |
+
|
1257 |
+
# learned sigma
|
1258 |
+
if self.transformer.config.out_channels // 2 == latent_channels:
|
1259 |
+
noise_pred = noise_pred.chunk(2, dim=1)[0]
|
1260 |
+
else:
|
1261 |
+
noise_pred = noise_pred
|
1262 |
+
|
1263 |
+
# compute previous image: x_t -> x_t-1
|
1264 |
+
latents = self.scheduler.step(
|
1265 |
+
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
1266 |
+
)[0]
|
1267 |
+
|
1268 |
+
# call the callback, if provided
|
1269 |
+
if i == len(timesteps) - 1 or (
|
1270 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
1271 |
+
):
|
1272 |
+
progress_bar.update()
|
1273 |
+
if callback is not None and i % callback_steps == 0:
|
1274 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1275 |
+
callback(step_idx, t, latents)
|
1276 |
+
|
1277 |
+
if not output_type == "latent":
|
1278 |
+
image = self.vae.decode(
|
1279 |
+
latents.to(device=self.vae.device, dtype=self.vae.dtype)
|
1280 |
+
/ self.vae.config.scaling_factor,
|
1281 |
+
return_dict=False,
|
1282 |
+
)[0]
|
1283 |
+
if use_resolution_binning:
|
1284 |
+
image = self.image_processor.resize_and_crop_tensor(
|
1285 |
+
image, orig_width, orig_height
|
1286 |
+
)
|
1287 |
+
else:
|
1288 |
+
image = latents
|
1289 |
+
|
1290 |
+
if not output_type == "latent":
|
1291 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1292 |
+
|
1293 |
+
# Offload all models
|
1294 |
+
self.maybe_free_model_hooks()
|
1295 |
+
|
1296 |
+
if not return_dict:
|
1297 |
+
return (image,)
|
1298 |
+
|
1299 |
+
return ImagePipelineOutput(images=image)
|