Spaces:
Runtime error
Runtime error
init
Browse files- app.py +57 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
|
4 |
+
|
5 |
+
|
6 |
+
@st.cache(allow_output_mutation=True)
|
7 |
+
def get_model():
|
8 |
+
# Load fine-tuned MRC model by HuggingFace Model Hub
|
9 |
+
HUGGINGFACE_MODEL_PATH = "bespin-global/klue-bert-base-aihub-mrc"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(HUGGINGFACE_MODEL_PATH )
|
11 |
+
model = AutoModelForQuestionAnswering.from_pretrained(HUGGINGFACE_MODEL_PATH )
|
12 |
+
|
13 |
+
return tokenizer, model
|
14 |
+
|
15 |
+
tokenizer, model = get_model()
|
16 |
+
|
17 |
+
## Title
|
18 |
+
st.title('BespinGlobal - Machine Reading Comprehension', anchor='https://huggingface.co/bespin-global/klue-bert-base-aihub-mrc')
|
19 |
+
|
20 |
+
## Text
|
21 |
+
st.text('bespin-global/klue-bert-base-aihub-mrc λͺ¨λΈ μ±λ₯ ν
μ€νΈ νμ΄μ§ μ
λλ€.')
|
22 |
+
|
23 |
+
# Text Input
|
24 |
+
context = st.text_area("π Context HERE!", placeholder="Please input some context..", height=300, on_change=None)
|
25 |
+
|
26 |
+
# Text Area
|
27 |
+
question = st.text_area("π‘ Question HERE!", placeholder="Please input your question..")
|
28 |
+
if st.button("Submit", key='question'):
|
29 |
+
try:
|
30 |
+
# Progress spinner
|
31 |
+
with st.spinner('Wait for it...'):
|
32 |
+
# Encoding
|
33 |
+
encodings = tokenizer(context, question,
|
34 |
+
max_length=512,
|
35 |
+
truncation=True,
|
36 |
+
padding="max_length",
|
37 |
+
return_token_type_ids=False
|
38 |
+
)
|
39 |
+
encodings = {key: torch.tensor([val]) for key, val in encodings.items()}
|
40 |
+
input_ids = encodings["input_ids"]
|
41 |
+
attention_mask = encodings["attention_mask"]
|
42 |
+
|
43 |
+
# Predict
|
44 |
+
pred = model(input_ids, attention_mask=attention_mask)
|
45 |
+
|
46 |
+
start_logits, end_logits = pred.start_logits, pred.end_logits
|
47 |
+
token_start_index, token_end_index = start_logits.argmax(dim=-1), end_logits.argmax(dim=-1)
|
48 |
+
pred_ids = input_ids[0][token_start_index: token_end_index + 1]
|
49 |
+
|
50 |
+
# Decoding
|
51 |
+
prediction = tokenizer.decode(pred_ids)
|
52 |
+
|
53 |
+
# answer
|
54 |
+
st.success(prediction)
|
55 |
+
|
56 |
+
except Exception as e:
|
57 |
+
st.error(e)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
streamlit
|