text-3D / app.py
bergrozen1213's picture
Update app.py
19ebe12
import os
import gradio as gr
from PIL import Image
import torch
import matplotlib.pyplot as plt
import imageio
import numpy as np
import argparse
from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config
from point_e.diffusion.sampler import PointCloudSampler
from point_e.models.download import load_checkpoint
from point_e.models.configs import MODEL_CONFIGS, model_from_config
from point_e.util.plotting import plot_point_cloud
from point_e.util.pc_to_mesh import marching_cubes_mesh
from diffusers import StableDiffusionPipeline
import trimesh
state = ""
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
css = '''
.instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important}
.arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important}
#component-4, #component-3, #component-10{min-height: 0}
.duplicate-button img{margin: 0}
'''
def set_state(s):
print(s)
global state
state = s
def get_state():
return state
def load_img2mesh_model(model_name):
set_state(f'Creating img2mesh model {model_name}...')
i2m_name = model_name
i2m_model = model_from_config(MODEL_CONFIGS[i2m_name], device)
i2m_model.eval()
base_diffusion_i2m = diffusion_from_config(DIFFUSION_CONFIGS[i2m_name])
set_state(f'Downloading img2mesh checkpoint {model_name}...')
i2m_model.load_state_dict(load_checkpoint(i2m_name, device))
return i2m_model, base_diffusion_i2m
def get_sampler(model_name, txt2obj, guidance_scale):
if txt2obj:
set_state('Creating txt2mesh model...')
t2m_name = 'base40M-textvec'
t2m_model = model_from_config(MODEL_CONFIGS[t2m_name], device)
t2m_model.eval()
base_diffusion_t2m = diffusion_from_config(DIFFUSION_CONFIGS[t2m_name])
set_state('Downloading txt2mesh checkpoint...')
t2m_model.load_state_dict(load_checkpoint(t2m_name, device))
else:
i2m_model, base_diffusion_i2m = load_img2mesh_model(model_name)
set_state('Creating upsample model...')
upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
upsampler_model.eval()
upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])
set_state('Downloading upsampler checkpoint...')
upsampler_model.load_state_dict(load_checkpoint('upsample', device))
return PointCloudSampler(
device=device,
models=[t2m_model if txt2obj else i2m_model, upsampler_model],
diffusions=[base_diffusion_t2m if txt2obj else base_diffusion_i2m, upsampler_diffusion],
num_points=[1024, 4096 - 1024],
aux_channels=['R', 'G', 'B'],
guidance_scale=[guidance_scale, 0.0 if txt2obj else guidance_scale],
model_kwargs_key_filter=('texts', '') if txt2obj else ("*",)
)
def generate_txt2img(prompt):
pipe = StableDiffusionPipeline.from_pretrained("point_e_model_cache/stable-diffusion-2-1", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
image = pipe(prompt).images[0]
return image
def generate_3D(input, model_name='base1B', guidance_scale=3.0, grid_size=128):
set_state('Entered generate function...')
# try:
# input = Image.fromarray(input)
# except:
# img = generate_txt2img(input)
# img.save('/tmp/img.png')
# input = Image.open('/tmp/img.png')
if isinstance(input, Image.Image):
input = prepare_img(input)
# if input is a string, it's a text prompt
sampler = get_sampler(model_name, txt2obj=True if isinstance(input, str) else False, guidance_scale=guidance_scale)
# Produce a sample from the model.
set_state('Sampling...')
samples = None
kw_args = dict(texts=[input]) if isinstance(input, str) else dict(images=[input])
for x in sampler.sample_batch_progressive(batch_size=1, model_kwargs=kw_args):
samples = x
set_state('Converting to point cloud...')
pc = sampler.output_to_point_clouds(samples)[0]
set_state('Converting to mesh...')
save_ply(pc, '/tmp/mesh.ply', grid_size)
set_state('')
return ply_to_glb('/tmp/mesh.ply', '/tmp/mesh.glb'), create_gif(pc), gr.update(value=['/tmp/mesh.glb', '/tmp/mesh.ply'], visible=True)
def prepare_img(img):
w, h = img.size
if w > h:
img = img.crop((w - h) / 2, 0, w - (w - h) / 2, h)
else:
img = img.crop((0, (h - w) / 2, w, h - (h - w) / 2))
# resize to 256x256
img = img.resize((256, 256))
return img
def ply_to_glb(ply_file, glb_file):
mesh = trimesh.load(ply_file)
# Save the mesh as a glb file using Trimesh
mesh.export(glb_file, file_type='glb')
return glb_file
def save_ply(pc, file_name, grid_size):
set_state('Creating SDF model...')
sdf_name = 'sdf'
sdf_model = model_from_config(MODEL_CONFIGS[sdf_name], device)
sdf_model.eval()
set_state('Loading SDF model...')
sdf_model.load_state_dict(load_checkpoint(sdf_name, device))
# Produce a mesh (with vertex colors)
mesh = marching_cubes_mesh(
pc=pc,
model=sdf_model,
batch_size=4096,
grid_size=grid_size, # increase to 128 for resolution used in evals
progress=True,
)
# Write the mesh to a PLY file to import into some other program.
with open(file_name, 'wb') as f:
mesh.write_ply(f)
def create_gif(pc):
fig = plt.figure(facecolor='black', figsize=(4, 4))
ax = fig.add_subplot(111, projection='3d', facecolor='black')
fixed_bounds=((-0.75, -0.75, -0.75),(0.75, 0.75, 0.75))
# Create an empty list to store the frames
frames = []
# Create a loop to generate the frames for the GIF
for angle in range(0, 360, 4):
# Clear the plot and plot the point cloud
ax.clear()
color_args = np.stack(
[pc.channels["R"], pc.channels["G"], pc.channels["B"]], axis=-1
)
c = pc.coords
ax.scatter(c[:, 0], c[:, 1], c[:, 2], c=color_args)
# Set the viewpoint for the plot
ax.view_init(elev=10, azim=angle)
# Turn off the axis labels and ticks
ax.axis('off')
ax.set_xlim3d(fixed_bounds[0][0], fixed_bounds[1][0])
ax.set_ylim3d(fixed_bounds[0][1], fixed_bounds[1][1])
ax.set_zlim3d(fixed_bounds[0][2], fixed_bounds[1][2])
# Draw the figure to update the image data
fig.canvas.draw()
# Save the plot as a frame for the GIF
frame = np.array(fig.canvas.renderer.buffer_rgba())
w, h = frame.shape[0], frame.shape[1]
i = int(round((h - int(h*0.6)) / 2.))
frame = frame[i:i + int(h*0.6),i:i + int(h*0.6)]
frames.append(frame)
# Save the GIF using imageio
imageio.mimsave('/tmp/pointcloud.mp4', frames, fps=30)
return '/tmp/pointcloud.mp4'
block = gr.Blocks().queue(max_size=250, concurrency_count=6)
with block:
with gr.Box():
if(not torch.cuda.is_available()):
top_description = gr.HTML(f'''
''')
else:
top_description = gr.HTML(f'''
''')
with gr.Row():
with gr.Column():
with gr.Tab("Image to 3D"):
gr.Markdown("Best results with images of objects on an empty background.")
input_image = gr.Image(label="Image")
img_button = gr.Button(label="Generate")
with gr.Tab("Text to 3D"):
gr.Markdown("Uses Stable Diffusion to create an image from the prompt.")
prompt = gr.Textbox(label="Prompt", placeholder="A HD photo of a Corgi")
text_button = gr.Button(label="Generate")
with gr.Accordion("Advanced options", open=False):
model = gr.Radio(["base40M", "base300M", "base1B"], label="Model", value="base1B")
scale = gr.Slider(
label="Guidance Scale", minimum=1.0, maximum=10.0, value=3.0, step=0.1
)
with gr.Column():
model_gif = gr.Video(label="3D Model GIF")
# btn_pc_to_obj = gr.Button(value="Convert to OBJ", visible=False)
model_3d = gr.Model3D(value=None)
file_out = gr.File(label="Files", visible=False)
if torch.cuda.is_available():
gr.Examples(
examples=[
["images/pumpkin.png"],
["images/fantasy_world.png"],
],
inputs=[input_image],
outputs=[model_3d, model_gif, file_out],
fn=generate_3D,
cache_examples=True
)
img_button.click(fn=generate_3D, inputs=[input_image, model, scale], outputs=[model_3d, model_gif, file_out])
text_button.click(fn=generate_3D, inputs=[prompt, model, scale], outputs=[model_3d, model_gif, file_out])
block.launch(show_api=False)