Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
from PIL import Image | |
import torch | |
import matplotlib.pyplot as plt | |
import imageio | |
import numpy as np | |
import argparse | |
from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config | |
from point_e.diffusion.sampler import PointCloudSampler | |
from point_e.models.download import load_checkpoint | |
from point_e.models.configs import MODEL_CONFIGS, model_from_config | |
from point_e.util.plotting import plot_point_cloud | |
from point_e.util.pc_to_mesh import marching_cubes_mesh | |
from diffusers import StableDiffusionPipeline | |
import trimesh | |
state = "" | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
css = ''' | |
.instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important} | |
.arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important} | |
#component-4, #component-3, #component-10{min-height: 0} | |
.duplicate-button img{margin: 0} | |
''' | |
def set_state(s): | |
print(s) | |
global state | |
state = s | |
def get_state(): | |
return state | |
def load_img2mesh_model(model_name): | |
set_state(f'Creating img2mesh model {model_name}...') | |
i2m_name = model_name | |
i2m_model = model_from_config(MODEL_CONFIGS[i2m_name], device) | |
i2m_model.eval() | |
base_diffusion_i2m = diffusion_from_config(DIFFUSION_CONFIGS[i2m_name]) | |
set_state(f'Downloading img2mesh checkpoint {model_name}...') | |
i2m_model.load_state_dict(load_checkpoint(i2m_name, device)) | |
return i2m_model, base_diffusion_i2m | |
def get_sampler(model_name, txt2obj, guidance_scale): | |
if txt2obj: | |
set_state('Creating txt2mesh model...') | |
t2m_name = 'base40M-textvec' | |
t2m_model = model_from_config(MODEL_CONFIGS[t2m_name], device) | |
t2m_model.eval() | |
base_diffusion_t2m = diffusion_from_config(DIFFUSION_CONFIGS[t2m_name]) | |
set_state('Downloading txt2mesh checkpoint...') | |
t2m_model.load_state_dict(load_checkpoint(t2m_name, device)) | |
else: | |
i2m_model, base_diffusion_i2m = load_img2mesh_model(model_name) | |
set_state('Creating upsample model...') | |
upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device) | |
upsampler_model.eval() | |
upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample']) | |
set_state('Downloading upsampler checkpoint...') | |
upsampler_model.load_state_dict(load_checkpoint('upsample', device)) | |
return PointCloudSampler( | |
device=device, | |
models=[t2m_model if txt2obj else i2m_model, upsampler_model], | |
diffusions=[base_diffusion_t2m if txt2obj else base_diffusion_i2m, upsampler_diffusion], | |
num_points=[1024, 4096 - 1024], | |
aux_channels=['R', 'G', 'B'], | |
guidance_scale=[guidance_scale, 0.0 if txt2obj else guidance_scale], | |
model_kwargs_key_filter=('texts', '') if txt2obj else ("*",) | |
) | |
def generate_txt2img(prompt): | |
pipe = StableDiffusionPipeline.from_pretrained("point_e_model_cache/stable-diffusion-2-1", torch_dtype=torch.float16) | |
pipe = pipe.to("cuda") | |
image = pipe(prompt).images[0] | |
return image | |
def generate_3D(input, model_name='base1B', guidance_scale=3.0, grid_size=128): | |
set_state('Entered generate function...') | |
# try: | |
# input = Image.fromarray(input) | |
# except: | |
# img = generate_txt2img(input) | |
# img.save('/tmp/img.png') | |
# input = Image.open('/tmp/img.png') | |
if isinstance(input, Image.Image): | |
input = prepare_img(input) | |
# if input is a string, it's a text prompt | |
sampler = get_sampler(model_name, txt2obj=True if isinstance(input, str) else False, guidance_scale=guidance_scale) | |
# Produce a sample from the model. | |
set_state('Sampling...') | |
samples = None | |
kw_args = dict(texts=[input]) if isinstance(input, str) else dict(images=[input]) | |
for x in sampler.sample_batch_progressive(batch_size=1, model_kwargs=kw_args): | |
samples = x | |
set_state('Converting to point cloud...') | |
pc = sampler.output_to_point_clouds(samples)[0] | |
set_state('Converting to mesh...') | |
save_ply(pc, '/tmp/mesh.ply', grid_size) | |
set_state('') | |
return ply_to_glb('/tmp/mesh.ply', '/tmp/mesh.glb'), create_gif(pc), gr.update(value=['/tmp/mesh.glb', '/tmp/mesh.ply'], visible=True) | |
def prepare_img(img): | |
w, h = img.size | |
if w > h: | |
img = img.crop((w - h) / 2, 0, w - (w - h) / 2, h) | |
else: | |
img = img.crop((0, (h - w) / 2, w, h - (h - w) / 2)) | |
# resize to 256x256 | |
img = img.resize((256, 256)) | |
return img | |
def ply_to_glb(ply_file, glb_file): | |
mesh = trimesh.load(ply_file) | |
# Save the mesh as a glb file using Trimesh | |
mesh.export(glb_file, file_type='glb') | |
return glb_file | |
def save_ply(pc, file_name, grid_size): | |
set_state('Creating SDF model...') | |
sdf_name = 'sdf' | |
sdf_model = model_from_config(MODEL_CONFIGS[sdf_name], device) | |
sdf_model.eval() | |
set_state('Loading SDF model...') | |
sdf_model.load_state_dict(load_checkpoint(sdf_name, device)) | |
# Produce a mesh (with vertex colors) | |
mesh = marching_cubes_mesh( | |
pc=pc, | |
model=sdf_model, | |
batch_size=4096, | |
grid_size=grid_size, # increase to 128 for resolution used in evals | |
progress=True, | |
) | |
# Write the mesh to a PLY file to import into some other program. | |
with open(file_name, 'wb') as f: | |
mesh.write_ply(f) | |
def create_gif(pc): | |
fig = plt.figure(facecolor='black', figsize=(4, 4)) | |
ax = fig.add_subplot(111, projection='3d', facecolor='black') | |
fixed_bounds=((-0.75, -0.75, -0.75),(0.75, 0.75, 0.75)) | |
# Create an empty list to store the frames | |
frames = [] | |
# Create a loop to generate the frames for the GIF | |
for angle in range(0, 360, 4): | |
# Clear the plot and plot the point cloud | |
ax.clear() | |
color_args = np.stack( | |
[pc.channels["R"], pc.channels["G"], pc.channels["B"]], axis=-1 | |
) | |
c = pc.coords | |
ax.scatter(c[:, 0], c[:, 1], c[:, 2], c=color_args) | |
# Set the viewpoint for the plot | |
ax.view_init(elev=10, azim=angle) | |
# Turn off the axis labels and ticks | |
ax.axis('off') | |
ax.set_xlim3d(fixed_bounds[0][0], fixed_bounds[1][0]) | |
ax.set_ylim3d(fixed_bounds[0][1], fixed_bounds[1][1]) | |
ax.set_zlim3d(fixed_bounds[0][2], fixed_bounds[1][2]) | |
# Draw the figure to update the image data | |
fig.canvas.draw() | |
# Save the plot as a frame for the GIF | |
frame = np.array(fig.canvas.renderer.buffer_rgba()) | |
w, h = frame.shape[0], frame.shape[1] | |
i = int(round((h - int(h*0.6)) / 2.)) | |
frame = frame[i:i + int(h*0.6),i:i + int(h*0.6)] | |
frames.append(frame) | |
# Save the GIF using imageio | |
imageio.mimsave('/tmp/pointcloud.mp4', frames, fps=30) | |
return '/tmp/pointcloud.mp4' | |
block = gr.Blocks().queue(max_size=250, concurrency_count=6) | |
with block: | |
with gr.Box(): | |
if(not torch.cuda.is_available()): | |
top_description = gr.HTML(f''' | |
''') | |
else: | |
top_description = gr.HTML(f''' | |
''') | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tab("Image to 3D"): | |
gr.Markdown("Best results with images of objects on an empty background.") | |
input_image = gr.Image(label="Image") | |
img_button = gr.Button(label="Generate") | |
with gr.Tab("Text to 3D"): | |
gr.Markdown("Uses Stable Diffusion to create an image from the prompt.") | |
prompt = gr.Textbox(label="Prompt", placeholder="A HD photo of a Corgi") | |
text_button = gr.Button(label="Generate") | |
with gr.Accordion("Advanced options", open=False): | |
model = gr.Radio(["base40M", "base300M", "base1B"], label="Model", value="base1B") | |
scale = gr.Slider( | |
label="Guidance Scale", minimum=1.0, maximum=10.0, value=3.0, step=0.1 | |
) | |
with gr.Column(): | |
model_gif = gr.Video(label="3D Model GIF") | |
# btn_pc_to_obj = gr.Button(value="Convert to OBJ", visible=False) | |
model_3d = gr.Model3D(value=None) | |
file_out = gr.File(label="Files", visible=False) | |
if torch.cuda.is_available(): | |
gr.Examples( | |
examples=[ | |
["images/pumpkin.png"], | |
["images/fantasy_world.png"], | |
], | |
inputs=[input_image], | |
outputs=[model_3d, model_gif, file_out], | |
fn=generate_3D, | |
cache_examples=True | |
) | |
img_button.click(fn=generate_3D, inputs=[input_image, model, scale], outputs=[model_3d, model_gif, file_out]) | |
text_button.click(fn=generate_3D, inputs=[prompt, model, scale], outputs=[model_3d, model_gif, file_out]) | |
block.launch(show_api=False) | |