Spaces:
Runtime error
Runtime error
import torch | |
from collections import OrderedDict | |
from os import path as osp | |
from tqdm import tqdm | |
from basicsr.archs import build_network | |
from basicsr.losses import build_loss | |
from basicsr.metrics import calculate_metric | |
from basicsr.utils import imwrite, tensor2img | |
from basicsr.utils.registry import MODEL_REGISTRY | |
from .sr_model import SRModel | |
class HiFaceGANModel(SRModel): | |
"""HiFaceGAN model for generic-purpose face restoration. | |
No prior modeling required, works for any degradations. | |
Currently doesn't support EMA for inference. | |
""" | |
def init_training_settings(self): | |
train_opt = self.opt['train'] | |
self.ema_decay = train_opt.get('ema_decay', 0) | |
if self.ema_decay > 0: | |
raise (NotImplementedError('HiFaceGAN does not support EMA now. Pass')) | |
self.net_g.train() | |
self.net_d = build_network(self.opt['network_d']) | |
self.net_d = self.model_to_device(self.net_d) | |
self.print_network(self.net_d) | |
# define losses | |
# HiFaceGAN does not use pixel loss by default | |
if train_opt.get('pixel_opt'): | |
self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device) | |
else: | |
self.cri_pix = None | |
if train_opt.get('perceptual_opt'): | |
self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device) | |
else: | |
self.cri_perceptual = None | |
if train_opt.get('feature_matching_opt'): | |
self.cri_feat = build_loss(train_opt['feature_matching_opt']).to(self.device) | |
else: | |
self.cri_feat = None | |
if self.cri_pix is None and self.cri_perceptual is None: | |
raise ValueError('Both pixel and perceptual losses are None.') | |
if train_opt.get('gan_opt'): | |
self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device) | |
self.net_d_iters = train_opt.get('net_d_iters', 1) | |
self.net_d_init_iters = train_opt.get('net_d_init_iters', 0) | |
# set up optimizers and schedulers | |
self.setup_optimizers() | |
self.setup_schedulers() | |
def setup_optimizers(self): | |
train_opt = self.opt['train'] | |
# optimizer g | |
optim_type = train_opt['optim_g'].pop('type') | |
self.optimizer_g = self.get_optimizer(optim_type, self.net_g.parameters(), **train_opt['optim_g']) | |
self.optimizers.append(self.optimizer_g) | |
# optimizer d | |
optim_type = train_opt['optim_d'].pop('type') | |
self.optimizer_d = self.get_optimizer(optim_type, self.net_d.parameters(), **train_opt['optim_d']) | |
self.optimizers.append(self.optimizer_d) | |
def discriminate(self, input_lq, output, ground_truth): | |
""" | |
This is a conditional (on the input) discriminator | |
In Batch Normalization, the fake and real images are | |
recommended to be in the same batch to avoid disparate | |
statistics in fake and real images. | |
So both fake and real images are fed to D all at once. | |
""" | |
h, w = output.shape[-2:] | |
if output.shape[-2:] != input_lq.shape[-2:]: | |
lq = torch.nn.functional.interpolate(input_lq, (h, w)) | |
real = torch.nn.functional.interpolate(ground_truth, (h, w)) | |
fake_concat = torch.cat([lq, output], dim=1) | |
real_concat = torch.cat([lq, real], dim=1) | |
else: | |
fake_concat = torch.cat([input_lq, output], dim=1) | |
real_concat = torch.cat([input_lq, ground_truth], dim=1) | |
fake_and_real = torch.cat([fake_concat, real_concat], dim=0) | |
discriminator_out = self.net_d(fake_and_real) | |
pred_fake, pred_real = self._divide_pred(discriminator_out) | |
return pred_fake, pred_real | |
def _divide_pred(pred): | |
""" | |
Take the prediction of fake and real images from the combined batch. | |
The prediction contains the intermediate outputs of multiscale GAN, | |
so it's usually a list | |
""" | |
if type(pred) == list: | |
fake = [] | |
real = [] | |
for p in pred: | |
fake.append([tensor[:tensor.size(0) // 2] for tensor in p]) | |
real.append([tensor[tensor.size(0) // 2:] for tensor in p]) | |
else: | |
fake = pred[:pred.size(0) // 2] | |
real = pred[pred.size(0) // 2:] | |
return fake, real | |
def optimize_parameters(self, current_iter): | |
# optimize net_g | |
for p in self.net_d.parameters(): | |
p.requires_grad = False | |
self.optimizer_g.zero_grad() | |
self.output = self.net_g(self.lq) | |
l_g_total = 0 | |
loss_dict = OrderedDict() | |
if (current_iter % self.net_d_iters == 0 and current_iter > self.net_d_init_iters): | |
# pixel loss | |
if self.cri_pix: | |
l_g_pix = self.cri_pix(self.output, self.gt) | |
l_g_total += l_g_pix | |
loss_dict['l_g_pix'] = l_g_pix | |
# perceptual loss | |
if self.cri_perceptual: | |
l_g_percep, l_g_style = self.cri_perceptual(self.output, self.gt) | |
if l_g_percep is not None: | |
l_g_total += l_g_percep | |
loss_dict['l_g_percep'] = l_g_percep | |
if l_g_style is not None: | |
l_g_total += l_g_style | |
loss_dict['l_g_style'] = l_g_style | |
# Requires real prediction for feature matching loss | |
pred_fake, pred_real = self.discriminate(self.lq, self.output, self.gt) | |
l_g_gan = self.cri_gan(pred_fake, True, is_disc=False) | |
l_g_total += l_g_gan | |
loss_dict['l_g_gan'] = l_g_gan | |
# feature matching loss | |
if self.cri_feat: | |
l_g_feat = self.cri_feat(pred_fake, pred_real) | |
l_g_total += l_g_feat | |
loss_dict['l_g_feat'] = l_g_feat | |
l_g_total.backward() | |
self.optimizer_g.step() | |
# optimize net_d | |
for p in self.net_d.parameters(): | |
p.requires_grad = True | |
self.optimizer_d.zero_grad() | |
# TODO: Benchmark test between HiFaceGAN and SRGAN implementation: | |
# SRGAN use the same fake output for discriminator update | |
# while HiFaceGAN regenerate a new output using updated net_g | |
# This should not make too much difference though. Stick to SRGAN now. | |
# ------------------------------------------------------------------- | |
# ---------- Below are original HiFaceGAN code snippet -------------- | |
# ------------------------------------------------------------------- | |
# with torch.no_grad(): | |
# fake_image = self.net_g(self.lq) | |
# fake_image = fake_image.detach() | |
# fake_image.requires_grad_() | |
# pred_fake, pred_real = self.discriminate(self.lq, fake_image, self.gt) | |
# real | |
pred_fake, pred_real = self.discriminate(self.lq, self.output.detach(), self.gt) | |
l_d_real = self.cri_gan(pred_real, True, is_disc=True) | |
loss_dict['l_d_real'] = l_d_real | |
# fake | |
l_d_fake = self.cri_gan(pred_fake, False, is_disc=True) | |
loss_dict['l_d_fake'] = l_d_fake | |
l_d_total = (l_d_real + l_d_fake) / 2 | |
l_d_total.backward() | |
self.optimizer_d.step() | |
self.log_dict = self.reduce_loss_dict(loss_dict) | |
if self.ema_decay > 0: | |
print('HiFaceGAN does not support EMA now. pass') | |
def validation(self, dataloader, current_iter, tb_logger, save_img=False): | |
""" | |
Warning: HiFaceGAN requires train() mode even for validation | |
For more info, see https://github.com/Lotayou/Face-Renovation/issues/31 | |
Args: | |
dataloader (torch.utils.data.DataLoader): Validation dataloader. | |
current_iter (int): Current iteration. | |
tb_logger (tensorboard logger): Tensorboard logger. | |
save_img (bool): Whether to save images. Default: False. | |
""" | |
if self.opt['network_g']['type'] in ('HiFaceGAN', 'SPADEGenerator'): | |
self.net_g.train() | |
if self.opt['dist']: | |
self.dist_validation(dataloader, current_iter, tb_logger, save_img) | |
else: | |
print('In HiFaceGANModel: The new metrics package is under development.' + | |
'Using super method now (Only PSNR & SSIM are supported)') | |
super().nondist_validation(dataloader, current_iter, tb_logger, save_img) | |
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img): | |
""" | |
TODO: Validation using updated metric system | |
The metrics are now evaluated after all images have been tested | |
This allows batch processing, and also allows evaluation of | |
distributional metrics, such as: | |
@ Frechet Inception Distance: FID | |
@ Maximum Mean Discrepancy: MMD | |
Warning: | |
Need careful batch management for different inference settings. | |
""" | |
dataset_name = dataloader.dataset.opt['name'] | |
with_metrics = self.opt['val'].get('metrics') is not None | |
if with_metrics: | |
self.metric_results = dict() # {metric: 0 for metric in self.opt['val']['metrics'].keys()} | |
sr_tensors = [] | |
gt_tensors = [] | |
pbar = tqdm(total=len(dataloader), unit='image') | |
for val_data in dataloader: | |
img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0] | |
self.feed_data(val_data) | |
self.test() | |
visuals = self.get_current_visuals() # detached cpu tensor, non-squeeze | |
sr_tensors.append(visuals['result']) | |
if 'gt' in visuals: | |
gt_tensors.append(visuals['gt']) | |
del self.gt | |
# tentative for out of GPU memory | |
del self.lq | |
del self.output | |
torch.cuda.empty_cache() | |
if save_img: | |
if self.opt['is_train']: | |
save_img_path = osp.join(self.opt['path']['visualization'], img_name, | |
f'{img_name}_{current_iter}.png') | |
else: | |
if self.opt['val']['suffix']: | |
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name, | |
f'{img_name}_{self.opt["val"]["suffix"]}.png') | |
else: | |
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name, | |
f'{img_name}_{self.opt["name"]}.png') | |
imwrite(tensor2img(visuals['result']), save_img_path) | |
pbar.update(1) | |
pbar.set_description(f'Test {img_name}') | |
pbar.close() | |
if with_metrics: | |
sr_pack = torch.cat(sr_tensors, dim=0) | |
gt_pack = torch.cat(gt_tensors, dim=0) | |
# calculate metrics | |
for name, opt_ in self.opt['val']['metrics'].items(): | |
# The new metric caller automatically returns mean value | |
# FIXME: ERROR: calculate_metric only supports two arguments. Now the codes cannot be successfully run | |
self.metric_results[name] = calculate_metric(dict(sr_pack=sr_pack, gt_pack=gt_pack), opt_) | |
self._log_validation_metric_values(current_iter, dataset_name, tb_logger) | |
def save(self, epoch, current_iter): | |
if hasattr(self, 'net_g_ema'): | |
print('HiFaceGAN does not support EMA now. Fallback to normal mode.') | |
self.save_network(self.net_g, 'net_g', current_iter) | |
self.save_network(self.net_d, 'net_d', current_iter) | |
self.save_training_state(epoch, current_iter) | |