Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,173 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
)
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
import gradio as gr
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
from pathlib import Path
|
6 |
+
from unidecode import unidecode
|
7 |
+
|
8 |
+
from langchain_community.document_loaders import PyPDFLoader
|
9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
from langchain_community.vectorstores import Chroma
|
11 |
+
from langchain.chains import ConversationalRetrievalChain
|
12 |
+
from langchain.memory import ConversationBufferMemory
|
13 |
+
|
14 |
+
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline
|
15 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
16 |
+
|
17 |
+
import chromadb
|
18 |
+
import torch
|
19 |
+
from concurrent.futures import ThreadPoolExecutor
|
20 |
+
|
21 |
+
# Environment configuration
|
22 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
23 |
+
|
24 |
+
# Predefined values
|
25 |
+
predefined_pdf = "t6.pdf"
|
26 |
+
predefined_llm = "meta-llama/Llama-2-7b-hf" # Use a smaller model for faster responses
|
27 |
+
|
28 |
+
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
29 |
+
loaders = [PyPDFLoader(x) for x in list_file_path]
|
30 |
+
pages = []
|
31 |
+
for loader in loaders:
|
32 |
+
pages.extend(loader.load())
|
33 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
34 |
+
chunk_size=chunk_size,
|
35 |
+
chunk_overlap=chunk_overlap)
|
36 |
+
doc_splits = text_splitter.split_documents(pages)
|
37 |
+
return doc_splits
|
38 |
+
|
39 |
+
def create_db(splits, collection_name):
|
40 |
+
embedding = HuggingFaceEmbeddings()
|
41 |
+
new_client = chromadb.EphemeralClient()
|
42 |
+
vectordb = Chroma.from_documents(
|
43 |
+
documents=splits,
|
44 |
+
embedding=embedding,
|
45 |
+
client=new_client,
|
46 |
+
collection_name=collection_name,
|
47 |
+
)
|
48 |
+
return vectordb
|
49 |
+
|
50 |
+
def load_db():
|
51 |
+
embedding = HuggingFaceEmbeddings()
|
52 |
+
vectordb = Chroma(
|
53 |
+
embedding_function=embedding)
|
54 |
+
return vectordb
|
55 |
+
|
56 |
+
def create_collection_name(filepath):
|
57 |
+
collection_name = Path(filepath).stem
|
58 |
+
collection_name = collection_name.replace(" ", "-")
|
59 |
+
collection_name = unidecode(collection_name)
|
60 |
+
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
|
61 |
+
collection_name = collection_name[:50]
|
62 |
+
if len(collection_name) < 3:
|
63 |
+
collection_name = collection_name + 'xyz'
|
64 |
+
if not collection_name[0].isalnum():
|
65 |
+
collection_name = 'A' + collection_name[1:]
|
66 |
+
if not collection_name[-1].isalnum():
|
67 |
+
collection_name = collection_name[:-1] + 'Z'
|
68 |
+
print('Filepath: ', filepath)
|
69 |
+
print('Collection name: ', collection_name)
|
70 |
+
return collection_name
|
71 |
+
|
72 |
+
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
|
73 |
+
if not torch.cuda.is_available():
|
74 |
+
print("CUDA is not available. This demo does not work on CPU.")
|
75 |
+
return None
|
76 |
+
|
77 |
+
def init_llm():
|
78 |
+
print("Initializing HF model and tokenizer...")
|
79 |
+
model = AutoModelForCausalLM.from_pretrained(llm_model, device_map="auto", load_in_4bit=True)
|
80 |
+
tokenizer = AutoTokenizer.from_pretrained(llm_model)
|
81 |
+
tokenizer.use_default_system_prompt = False
|
82 |
+
|
83 |
+
print("Initializing HF pipeline...")
|
84 |
+
hf_pipeline = pipeline(
|
85 |
+
"text-generation",
|
86 |
+
model=model,
|
87 |
+
tokenizer=tokenizer,
|
88 |
+
device_map='auto',
|
89 |
+
max_new_tokens=max_tokens,
|
90 |
+
do_sample=True,
|
91 |
+
top_k=top_k,
|
92 |
+
num_return_sequences=1,
|
93 |
+
eos_token_id=tokenizer.eos_token_id
|
94 |
+
)
|
95 |
+
llm = HuggingFacePipeline(pipeline=hf_pipeline, model_kwargs={'temperature': temperature})
|
96 |
+
|
97 |
+
print("Defining buffer memory...")
|
98 |
+
memory = ConversationBufferMemory(
|
99 |
+
memory_key="chat_history",
|
100 |
+
output_key='answer',
|
101 |
+
return_messages=True
|
102 |
+
)
|
103 |
+
retriever = vector_db.as_retriever()
|
104 |
+
|
105 |
+
print("Defining retrieval chain...")
|
106 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
107 |
+
llm,
|
108 |
+
retriever=retriever,
|
109 |
+
chain_type="stuff",
|
110 |
+
memory=memory,
|
111 |
+
return_source_documents=True,
|
112 |
+
verbose=False,
|
113 |
+
)
|
114 |
+
return qa_chain
|
115 |
+
|
116 |
+
with ThreadPoolExecutor() as executor:
|
117 |
+
future = executor.submit(init_llm)
|
118 |
+
qa_chain = future.result()
|
119 |
+
|
120 |
+
print("Initialization complete!")
|
121 |
+
return qa_chain
|
122 |
+
|
123 |
+
# Define the conversation function with streaming
|
124 |
+
@spaces.GPU()
|
125 |
+
def conversation(message):
|
126 |
+
global qa_chain
|
127 |
+
# Generate response using QA chain with yield for streaming
|
128 |
+
for response_part in qa_chain({"question": message}):
|
129 |
+
yield response_part["answer"]
|
130 |
+
# Extract sources and their content
|
131 |
+
response_sources = response["source_documents"]
|
132 |
+
response_source1 = response_sources[0].page_content.strip() if response_sources and len(response_sources) > 0 else ""
|
133 |
+
response_source2 = response_sources[1].page_content.strip() if response_sources and len(response_sources) > 1 else ""
|
134 |
+
response_source3 = response_sources[2].page_content.strip() if response_sources and len(response_sources) > 2 else ""
|
135 |
+
|
136 |
+
# Langchain sources are zero-based
|
137 |
+
response_source1_page = response_sources[0].metadata["page"] + 1 if response_sources and len(response_sources) > 0 else 0
|
138 |
+
response_source2_page = response_sources[1].metadata["page"] + 1 if response_sources and len(response_sources) > 1 else 0
|
139 |
+
response_source3_page = response_sources[2].metadata["page"] + 1 if response_sources and len(response_sources) > 2 else 0
|
140 |
+
|
141 |
+
# Format the response for visualization
|
142 |
+
answer_visualization = (
|
143 |
+
f"Question: {message}\n"
|
144 |
+
f"Answer: {response_answer}\n\n"
|
145 |
+
f"Source 1 (Page {response_source1_page}): {response_source1}\n\n"
|
146 |
+
f"Source 2 (Page {response_source2_page}): {response_source2}\n\n"
|
147 |
+
f"Source 3 (Page {response_source3_page}): {response_source3}"
|
148 |
+
)
|
149 |
+
|
150 |
+
yield answer_visualization
|
151 |
+
|
152 |
+
# Load the PDF document and create the vector database (replace with your logic)
|
153 |
+
pdf_filepath = predefined_pdf
|
154 |
+
doc_splits = load_doc([pdf_filepath], chunk_size=2048, chunk_overlap=512)
|
155 |
+
collection_name = create_collection_name(pdf_filepath)
|
156 |
+
vector_db = create_db(doc_splits, collection_name)
|
157 |
+
|
158 |
+
# Initialize the LLM chain with threading
|
159 |
+
qa_chain = initialize_llmchain(predefined_llm, temperature=0.7, max_tokens=64, top_k=1, vector_db=vector_db)
|
160 |
+
|
161 |
+
# Check if qa_chain is properly initialized
|
162 |
+
if qa_chain is None:
|
163 |
+
print("Failed to initialize the QA chain. Please check the CUDA availability and model paths.")
|
164 |
+
else:
|
165 |
+
# Launch the Gradio interface with share option
|
166 |
+
interface = gr.Interface(
|
167 |
+
fn=conversation,
|
168 |
+
inputs="textbox", # Use a single input textbox
|
169 |
+
outputs="text", # Text output for streaming
|
170 |
+
title="Conversational AI with Retrieval",
|
171 |
+
description="Ask me anything about the uploaded PDF document!",
|
172 |
+
)
|
173 |
+
interface.launch()
|