Update app.py
Browse files
app.py
CHANGED
@@ -1,171 +1,3 @@
|
|
1 |
-
# import spaces
|
2 |
-
# import gradio as gr
|
3 |
-
# import os
|
4 |
-
# import re
|
5 |
-
# from pathlib import Path
|
6 |
-
# from unidecode import unidecode
|
7 |
-
|
8 |
-
# from langchain_community.document_loaders import PyPDFLoader
|
9 |
-
# from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
-
# from langchain_community.vectorstores import Chroma
|
11 |
-
# from langchain.chains import ConversationalRetrievalChain
|
12 |
-
# from langchain.memory import ConversationBufferMemory
|
13 |
-
|
14 |
-
# from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline
|
15 |
-
# from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
16 |
-
|
17 |
-
# import chromadb
|
18 |
-
# import torch
|
19 |
-
# from concurrent.futures import ThreadPoolExecutor
|
20 |
-
|
21 |
-
# # Environment configuration
|
22 |
-
# os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
23 |
-
|
24 |
-
# # Predefined values
|
25 |
-
# predefined_pdf = "t6.pdf"
|
26 |
-
# predefined_llm = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" # Use a smaller model for faster responses
|
27 |
-
|
28 |
-
# def load_doc(list_file_path, chunk_size, chunk_overlap):
|
29 |
-
# loaders = [PyPDFLoader(x) for x in list_file_path]
|
30 |
-
# pages = []
|
31 |
-
# for loader in loaders:
|
32 |
-
# pages.extend(loader.load())
|
33 |
-
# text_splitter = RecursiveCharacterTextSplitter(
|
34 |
-
# chunk_size=chunk_size,
|
35 |
-
# chunk_overlap=chunk_overlap)
|
36 |
-
# doc_splits = text_splitter.split_documents(pages)
|
37 |
-
# return doc_splits
|
38 |
-
|
39 |
-
# def create_db(splits, collection_name):
|
40 |
-
# embedding = HuggingFaceEmbeddings()
|
41 |
-
# new_client = chromadb.EphemeralClient()
|
42 |
-
# vectordb = Chroma.from_documents(
|
43 |
-
# documents=splits,
|
44 |
-
# embedding=embedding,
|
45 |
-
# client=new_client,
|
46 |
-
# collection_name=collection_name,
|
47 |
-
# )
|
48 |
-
# return vectordb
|
49 |
-
|
50 |
-
# def load_db():
|
51 |
-
# embedding = HuggingFaceEmbeddings()
|
52 |
-
# vectordb = Chroma(
|
53 |
-
# embedding_function=embedding)
|
54 |
-
# return vectordb
|
55 |
-
|
56 |
-
# def create_collection_name(filepath):
|
57 |
-
# collection_name = Path(filepath).stem
|
58 |
-
# collection_name = collection_name.replace(" ", "-")
|
59 |
-
# collection_name = unidecode(collection_name)
|
60 |
-
# collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
|
61 |
-
# collection_name = collection_name[:50]
|
62 |
-
# if len(collection_name) < 3:
|
63 |
-
# collection_name = collection_name + 'xyz'
|
64 |
-
# if not collection_name[0].isalnum():
|
65 |
-
# collection_name = 'A' + collection_name[1:]
|
66 |
-
# if not collection_name[-1].isalnum():
|
67 |
-
# collection_name = collection_name[:-1] + 'Z'
|
68 |
-
# print('Filepath: ', filepath)
|
69 |
-
# print('Collection name: ', collection_name)
|
70 |
-
# return collection_name
|
71 |
-
|
72 |
-
# def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
|
73 |
-
# if not torch.cuda.is_available():
|
74 |
-
# print("CUDA is not available. This demo does not work on CPU.")
|
75 |
-
# return None
|
76 |
-
|
77 |
-
# def init_llm():
|
78 |
-
# print("Initializing HF model and tokenizer...")
|
79 |
-
# model = AutoModelForCausalLM.from_pretrained(llm_model, device_map="auto", load_in_4bit=True)
|
80 |
-
# tokenizer = AutoTokenizer.from_pretrained(llm_model)
|
81 |
-
# tokenizer.use_default_system_prompt = False
|
82 |
-
|
83 |
-
# print("Initializing HF pipeline...")
|
84 |
-
# hf_pipeline = pipeline(
|
85 |
-
# "text-generation",
|
86 |
-
# model=model,
|
87 |
-
# tokenizer=tokenizer,
|
88 |
-
# device_map='auto',
|
89 |
-
# max_new_tokens=max_tokens,
|
90 |
-
# do_sample=True,
|
91 |
-
# top_k=top_k,
|
92 |
-
# num_return_sequences=1,
|
93 |
-
# eos_token_id=tokenizer.eos_token_id
|
94 |
-
# )
|
95 |
-
# llm = HuggingFacePipeline(pipeline=hf_pipeline, model_kwargs={'temperature': temperature})
|
96 |
-
|
97 |
-
# print("Defining buffer memory...")
|
98 |
-
# memory = ConversationBufferMemory(
|
99 |
-
# memory_key="chat_history",
|
100 |
-
# output_key='answer',
|
101 |
-
# return_messages=True
|
102 |
-
# )
|
103 |
-
# retriever = vector_db.as_retriever()
|
104 |
-
|
105 |
-
# print("Defining retrieval chain...")
|
106 |
-
# qa_chain = ConversationalRetrievalChain.from_llm(
|
107 |
-
# llm,
|
108 |
-
# retriever=retriever,
|
109 |
-
# chain_type="stuff",
|
110 |
-
# memory=memory,
|
111 |
-
# return_source_documents=True,
|
112 |
-
# verbose=False,
|
113 |
-
# )
|
114 |
-
# return qa_chain
|
115 |
-
|
116 |
-
# with ThreadPoolExecutor() as executor:
|
117 |
-
# future = executor.submit(init_llm)
|
118 |
-
# qa_chain = future.result()
|
119 |
-
|
120 |
-
# print("Initialization complete!")
|
121 |
-
# return qa_chain
|
122 |
-
|
123 |
-
# # Define the conversation function
|
124 |
-
# @spaces.GPU(duration=60)
|
125 |
-
# def chat(message):
|
126 |
-
# global qa_chain
|
127 |
-
# prompt_template = "Instruction: You are an expert landlside assistant. Please provide a well written detailed and helpful answer to the following user query only from the given references.User Query:\n"
|
128 |
-
# full_input = prompt_template + message
|
129 |
-
# response = qa_chain({"question": full_input})
|
130 |
-
# full_answer = response["answer"]
|
131 |
-
# answer_parts = full_answer.split("Helpful Answer:")
|
132 |
-
# qa_chain.memory.clear()
|
133 |
-
# if len(answer_parts) > 1:
|
134 |
-
# main_answer = answer_parts[-1].strip() # Extracting the main answer
|
135 |
-
# references = answer_parts[0].strip() # Keeping the references
|
136 |
-
# answer = f"Helpful Answer: {main_answer}\n\nReferences:\n{references}"
|
137 |
-
# else:
|
138 |
-
# answer = full_answer # In case there is no "Helpful Answer" part
|
139 |
-
# return answer, full_answer
|
140 |
-
|
141 |
-
# interface = gr.Interface(
|
142 |
-
# fn=chat,
|
143 |
-
# inputs="textbox", # Use a single input textbox
|
144 |
-
# outputs=["textbox", "textbox"], # Two output fields: one for the main answer, one for other outputs
|
145 |
-
# title="LANDSLIDE AWARENESS CHATBOT",
|
146 |
-
# description="Ask me anything related to landlsides!",
|
147 |
-
# elem_id="my-interface",
|
148 |
-
# )
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
# # Load the PDF document and create the vector database (replace with your logic)
|
153 |
-
# pdf_filepath = predefined_pdf
|
154 |
-
# doc_splits = load_doc([pdf_filepath], chunk_size=400, chunk_overlap=40)
|
155 |
-
# collection_name = create_collection_name(pdf_filepath)
|
156 |
-
# vector_db = create_db(doc_splits, collection_name)
|
157 |
-
|
158 |
-
# # Initialize the LLM chain with threading
|
159 |
-
# qa_chain = initialize_llmchain(predefined_llm, temperature=0.7, max_tokens=512, top_k=5, vector_db=vector_db)
|
160 |
-
|
161 |
-
# # Check if qa_chain is properly initialized
|
162 |
-
# if qa_chain is None:
|
163 |
-
# print("Failed to initialize the QA chain. Please check the CUDA availability and model paths.")
|
164 |
-
# else:
|
165 |
-
# # Launch the Gradio interface with share option
|
166 |
-
# interface.launch(share=True)
|
167 |
-
|
168 |
-
|
169 |
import spaces
|
170 |
import gradio as gr
|
171 |
import os
|
@@ -292,7 +124,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
|
|
292 |
@spaces.GPU(duration=60)
|
293 |
def chat(message):
|
294 |
global qa_chain
|
295 |
-
prompt_template = "Instruction: You are an expert
|
296 |
full_input = prompt_template + message
|
297 |
response = qa_chain({"question": full_input})
|
298 |
full_answer = response["answer"]
|
@@ -309,12 +141,14 @@ def chat(message):
|
|
309 |
interface = gr.Interface(
|
310 |
fn=chat,
|
311 |
inputs="textbox", # Use a single input textbox
|
312 |
-
outputs=["
|
313 |
title="LANDSLIDE AWARENESS CHATBOT",
|
314 |
-
description="Ask me anything related to
|
315 |
elem_id="my-interface",
|
316 |
)
|
317 |
|
|
|
|
|
318 |
# Load the PDF document and create the vector database (replace with your logic)
|
319 |
pdf_filepath = predefined_pdf
|
320 |
doc_splits = load_doc([pdf_filepath], chunk_size=400, chunk_overlap=40)
|
@@ -330,3 +164,5 @@ if qa_chain is None:
|
|
330 |
else:
|
331 |
# Launch the Gradio interface with share option
|
332 |
interface.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
import os
|
|
|
124 |
@spaces.GPU(duration=60)
|
125 |
def chat(message):
|
126 |
global qa_chain
|
127 |
+
prompt_template = "Instruction: You are an expert landlside assistant. Please provide a well written detailed and helpful answer to the following user query only from the given references.User Query:\n"
|
128 |
full_input = prompt_template + message
|
129 |
response = qa_chain({"question": full_input})
|
130 |
full_answer = response["answer"]
|
|
|
141 |
interface = gr.Interface(
|
142 |
fn=chat,
|
143 |
inputs="textbox", # Use a single input textbox
|
144 |
+
outputs=["textbox", "textbox"], # Two output fields: one for the main answer, one for other outputs
|
145 |
title="LANDSLIDE AWARENESS CHATBOT",
|
146 |
+
description="Ask me anything related to landlsides!",
|
147 |
elem_id="my-interface",
|
148 |
)
|
149 |
|
150 |
+
|
151 |
+
|
152 |
# Load the PDF document and create the vector database (replace with your logic)
|
153 |
pdf_filepath = predefined_pdf
|
154 |
doc_splits = load_doc([pdf_filepath], chunk_size=400, chunk_overlap=40)
|
|
|
164 |
else:
|
165 |
# Launch the Gradio interface with share option
|
166 |
interface.launch(share=True)
|
167 |
+
|
168 |
+
|