Spaces:
Running
Running
import cv2 | |
import numpy as np | |
# VR Lense Distortion | |
# Taken from https://github.com/g0kuvonlange/vrswap | |
def get_perspective(img, FOV, THETA, PHI, height, width): | |
# | |
# THETA is left/right angle, PHI is up/down angle, both in degree | |
# | |
[orig_width, orig_height, _] = img.shape | |
equ_h = orig_height | |
equ_w = orig_width | |
equ_cx = (equ_w - 1) / 2.0 | |
equ_cy = (equ_h - 1) / 2.0 | |
wFOV = FOV | |
hFOV = float(height) / width * wFOV | |
w_len = np.tan(np.radians(wFOV / 2.0)) | |
h_len = np.tan(np.radians(hFOV / 2.0)) | |
x_map = np.ones([height, width], np.float32) | |
y_map = np.tile(np.linspace(-w_len, w_len, width), [height, 1]) | |
z_map = -np.tile(np.linspace(-h_len, h_len, height), [width, 1]).T | |
D = np.sqrt(x_map**2 + y_map**2 + z_map**2) | |
xyz = np.stack((x_map, y_map, z_map), axis=2) / np.repeat( | |
D[:, :, np.newaxis], 3, axis=2 | |
) | |
y_axis = np.array([0.0, 1.0, 0.0], np.float32) | |
z_axis = np.array([0.0, 0.0, 1.0], np.float32) | |
[R1, _] = cv2.Rodrigues(z_axis * np.radians(THETA)) | |
[R2, _] = cv2.Rodrigues(np.dot(R1, y_axis) * np.radians(-PHI)) | |
xyz = xyz.reshape([height * width, 3]).T | |
xyz = np.dot(R1, xyz) | |
xyz = np.dot(R2, xyz).T | |
lat = np.arcsin(xyz[:, 2]) | |
lon = np.arctan2(xyz[:, 1], xyz[:, 0]) | |
lon = lon.reshape([height, width]) / np.pi * 180 | |
lat = -lat.reshape([height, width]) / np.pi * 180 | |
lon = lon / 180 * equ_cx + equ_cx | |
lat = lat / 90 * equ_cy + equ_cy | |
persp = cv2.remap( | |
img, | |
lon.astype(np.float32), | |
lat.astype(np.float32), | |
cv2.INTER_CUBIC, | |
borderMode=cv2.BORDER_WRAP, | |
) | |
return persp | |