Spaces:
Runtime error
Runtime error
File size: 1,318 Bytes
ffd5eab f150fa4 ffd5eab f150fa4 0a6ed9e f150fa4 f7451c4 f150fa4 ffd5eab 076ac90 f150fa4 ffd5eab bd15dc9 36f5cb5 797b660 f150fa4 797b660 ffd5eab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import gradio as gr
import ast
model = gr.Interface.load("huggingface/pyannote/voice-activity-detection")
def format_inference(output):
if output:
timestamps = []
for out in output:
timestamps.append(f"Start: {out['start']}s; Stop: {out['stop']}s")
return "\n".join(timestamps)
else:
return "No voice activity detected."
def inference(audio_file):
output = model(audio_file)
output_list = ast.literal_eval(output)
return format_inference(output_list)
inputs = gr.inputs.Audio(label="Input Audio", type="filepath", source="upload")
outputs = gr.outputs.Textbox(label="Voice timestamps", type="auto")
title = "Voice Activity Detection"
description = "<p style='text-align: center'>Record an audio file and detected voices will be timestamped.</p>"
article = "<p style='text-align: center'>Model by pyannote, https://github.com/pyannote/pyannote-audio</p>"
examples = [["talk.wav"],
["talk2.wav"],
["silence.wav"],]
gr.Interface(inference,
inputs,
outputs,
title=title,
description=description,
article=article,
examples=examples,
theme="grass",
allow_flagging=False,
).launch(debug=True)
|