File size: 12,171 Bytes
87969f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f91e168
 
87969f7
80a9f44
87969f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f91e168
 
87969f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80a9f44
87969f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80a9f44
87969f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f91e168
87969f7
 
 
 
f91e168
87969f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f91e168
87969f7
 
 
 
 
 
 
 
 
 
 
 
 
f91e168
87969f7
f91e168
87969f7
 
f91e168
87969f7
f91e168
87969f7
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import pandas as pd
import streamlit as st
import streamlit_ace as stace
import duckdb
import numpy as np # for user session
import scipy # for user session
import plotly.express as px # for user session
import plotly.figure_factory as ff # for user session
import matplotlib.pyplot as plt # for user session
import sklearn
from ydata_profiling import ProfileReport
from streamlit_pandas_profiling import st_profile_report

st.set_page_config(page_title="PySQLify", page_icon="πŸ”Ž", layout="wide")
st.title("PySQLify")
st.write("_Data Analysis_ Tool")

p = st.write
print = st.write

@st.cache
def _read_csv(f, **kwargs):
    df = pd.read_csv(f, on_bad_lines="skip", **kwargs)
    # clean
    df.columns = [c.strip() for c in df.columns]
    return df


SAMPLE_DATA = {
    "Churn dataset": "https://raw.githubusercontent.com/AtashfarazNavid/MachineLearing-ChurnModeling/main/Streamlit-WebApp-1/Churn.csv",
    "Periodic Table": "https://gist.githubusercontent.com/GoodmanSciences/c2dd862cd38f21b0ad36b8f96b4bf1ee/raw/1d92663004489a5b6926e944c1b3d9ec5c40900e/Periodic%2520Table%2520of%2520Elements.csv",
    "Movies": "https://raw.githubusercontent.com/reisanar/datasets/master/HollywoodMovies.csv",
    "Iris Flower": "https://gist.githubusercontent.com/netj/8836201/raw/6f9306ad21398ea43cba4f7d537619d0e07d5ae3/iris.csv",
    "World Population": "https://gist.githubusercontent.com/curran/13d30e855d48cdd6f22acdf0afe27286/raw/0635f14817ec634833bb904a47594cc2f5f9dbf8/worldcities_clean.csv",
    "Country Table": "https://raw.githubusercontent.com/datasciencedojo/datasets/master/WorldDBTables/CountryTable.csv",
    "World Cities": "https://raw.githubusercontent.com/dr5hn/countries-states-cities-database/master/csv/cities.csv",
    "World States": "https://raw.githubusercontent.com/dr5hn/countries-states-cities-database/master/csv/states.csv",
    "World Countries": "https://raw.githubusercontent.com/dr5hn/countries-states-cities-database/master/csv/countries.csv"
}


def read_data():
    txt = "Upload a data file (supported files: .csv)"
    placeholder = st.empty()
    with placeholder:
        col1, col2, col3 = st.columns([3, 2, 1])
        with col1:
            file_ = st.file_uploader(txt, help="TODO: .tsv, .xls, .xlsx")
        with col2:
            url = st.text_input(
                "Read from a URL",
                placeholder="Enter URL (supported types: .csv and .tsv)",
            )
            if url:
                file_ = url
        with col3:
            selected = st.selectbox("Select a sample dataset", options=[""] + list(SAMPLE_DATA))
            if selected:
                file_ = SAMPLE_DATA[selected]

    if not file_:
        st.stop()

    placeholder.empty()
    kwargs = {"skiprows": st.number_input("skip header", value=0, max_value=10)}
    try:
        return _read_csv(file_, **kwargs)
    except Exception as e:
        st.warning("Unsupported file type!")
        st.stop()


def display(df):
    view_info = st.checkbox("view data types")
    st.dataframe(df, use_container_width=True)

    # info
    st.markdown(f"> <sup>shape `{df.shape}`</sup>", unsafe_allow_html=True)

    if view_info:
        types_ = df.dtypes.to_dict()
        types_ = [{"Column": c, "Type": t} for c, t in types_.items()]
        df_ = pd.DataFrame(types_)
        st.sidebar.subheader("TABLE DETAILS")
        st.sidebar.write(df_)


def code_editor(language, hint, show_panel, key=None):
    # Spawn a new Ace editor
    placeholder = st.empty()

    default_theme = "solarized_dark" if language == "sql" else "chrome"

    with placeholder.expander("CELL CONFIG"):
        # configs
        _THEMES = stace.THEMES
        _KEYBINDINGS = stace.KEYBINDINGS
        col21, col22 = st.columns(2)
        with col21:
            theme = st.selectbox("Theme", options=[default_theme] + _THEMES, key=f"{language}1{key}")
            tab_size = st.slider("Tab size", min_value=1, max_value=8, value=4, key=f"{language}2{key}")
        with col22:
            keybinding = st.selectbox("Keybinding", options=[_KEYBINDINGS[-2]] + _KEYBINDINGS, key=f"{language}3{key}")
            font_size = st.slider("Font size", min_value=5, max_value=24, value=14, key=f"{language}4{key}")
        height = st.slider("Editor height", value=230, max_value=777,key=f"{language}5{key}")
        # kwargs = {theme: theme, keybinding: keybinding} # TODO: DRY
    if not show_panel:
        placeholder.empty()

    content = stace.st_ace(
        language=language,
        height=height,
        show_gutter=False,
        # annotations="",
        placeholder=hint,
        keybinding=keybinding,
        theme=theme,
        font_size=font_size,
        tab_size=tab_size,
        key=key
    )

    # Display editor's content as you type
    # content
    return content


@st.cache
def query_data(sql, df):
    try:
        return duckdb.query(sql).df()
    except Exception as e:
        st.warning("Invalid Query!")
        # st.stop()


def download(df, key, save_as="results.csv"):
    # -- to download
    # @st.cache_data
    def convert_df(_df):
        return _df.to_csv().encode("utf-8")

    csv = convert_df(df)
    st.download_button(
        "Download",
        csv,
        save_as,
        "text/csv",
        key=key
    )


def display_results(query: str, result: pd.DataFrame, key: str):
    st.dataframe(result, use_container_width=True)
    st.markdown(f"> `{result.shape}`")
    download(result, key=key)


def run_python_script(user_script, key):
    if user_script.startswith("st.") or ";" in user_script:
        py = user_script
    elif user_script.endswith("?"): # -- same as ? in Jupyter Notebook
        in_ = user_script.replace("?", "")
        py = f"st.help({in_})"
    else:
        py = f"st.write({user_script})"
    try:
        cmds = py.split(";")
        for cmd in cmds:
            exec(cmd)
    except Exception as e:
        c1, c2 = st.columns(2)
        c1.warning("Wrong Python command.")
        if c2.button("Show error", key=key):
            st.exception(e)


@st.experimental_singleton
def data_profiler(df):
    return ProfileReport(df, title="Profiling Report")


def docs():
    content = """
    
    # What

    Upload a dataset to process (manipulate/analyze) it using SQL and Python, similar to running Jupyter Notebooks.
    To get started, drag and drop the dataset file, read from a URL, or select a sample dataset. To load a new dataset, refresh the webpage.
    > <sub>[_src code_ here](https://github.com/iamaziz/sqlify)</sub>

    More public datasets available [here](https://github.com/fivethirtyeight/data).

    # Usage

    Example usage

    > After loading the sample Iris dataset from sklearn (or select it from the dropdown list), the lines below can be executed inside a Python cell:

    ```python

    from sklearn.datasets import load_iris;
    from sklearn import tree;
    iris = load_iris();
    X, y = iris.data, iris.target;
    clf = tree.DecisionTreeClassifier(max_depth=4);
    clf = clf.fit(X, y);
    plt.figure(figsize=(7,3));
    fig, ax = plt.subplots()
    tree.plot_tree(clf, filled=True, fontsize=4);
    st.pyplot(fig)
    ```
    
    Which outputs the tree below:
    
    > <img width="1000" alt="image" src="https://user-images.githubusercontent.com/3298308/222992623-1dba9bad-4858-43b6-84bf-9d7cf78d61f7.png">

    # SCREENSHOTS

    ## _EXAMPLE 1_
    ![image](https://user-images.githubusercontent.com/3298308/222946054-a92ea42c-ffe6-4958-900b-2b72056216f8.png)

    ## _EXAMPLE 2_
    ![image](https://user-images.githubusercontent.com/3298308/222947315-f2c06063-dd18-4215-bbab-c1b2f3f00888.png)
    ![image](https://user-images.githubusercontent.com/3298308/222947321-c7e38d9d-7274-4368-91c1-1548b0da14dc.png)

    ## _EXAMPLE 3_
    ![image](https://user-images.githubusercontent.com/3298308/222949287-2024a75f-04db-4861-93b5-c43d206e2dc6.png)

    ## _EXAMPLE 4_
    ![image](https://user-images.githubusercontent.com/3298308/222984104-0bfd806f-ecd9-455e-b368-181f9aa0225b.png)

    """

    with st.expander("READE"):
        st.markdown(content, unsafe_allow_html=True)

        return st.checkbox("Show more code examples")


def display_example_snippets():
    from glob import glob

    examples = glob("./examples/*")
    with st.expander("EXAMPLES"):
        example = st.selectbox("", options=[""] + examples)
        if example:
            with open(example, "r") as f:
                content = f.read()
            st.code(content)


if __name__ == "__main__":
    show_examples = docs()
    if show_examples:
        display_example_snippets()

    df = read_data()
    display(df)

    # run and execute SQL script
    def sql_cells(df):
        st.write("---")
        st.header("SQL")
        hint = """Type SQL to query the loaded dataset, data is stored in a table named 'df'.
        For example, to select 10 rows:
            SELECT * FROM df LIMIT 10
        Describe the table:
            DESCRIBE TABLE df
        """
        number_cells = st.sidebar.number_input("Number of SQL cells to use", value=1, max_value=40)
        for i in range(number_cells):
            col1, col2 = st.columns([2, 1])
            st.markdown("<br>", unsafe_allow_html=True)
            col1.write(f"> `IN[{i+1}]`")
            show_panel = col2.checkbox("Show cell config panel", key=f"sql_{i}")
            key = f"sql{i}"
            sql = code_editor("sql", hint, show_panel=show_panel, key=key)
            if sql:
                st.code(sql, language="sql")
                st.write(f"`OUT[{i+1}]`")
                res = query_data(sql, df)
                display_results(sql, res, f"{key}{sql}")

    # run and dexectue python script
    def python_cells():
        st.write("---")
        st.header("Python")
        hint = """Type Python command (one-liner) to execute or manipulate the dataframe e.g. `df.sample(7)`. By default, results are rendered using `st.write()`.
        πŸ“Š Visulaization example: from "movies" dataset, plot average rating by genre:
            st.line_chart(df.groupby("Genre")[["RottenTomatoes", "AudienceScore"]].mean())
        πŸ—Ί Maps example: show the top 10 populated cities in the world on map (from "Cities Population" dataset)
            st.map(df.sort_values(by='population', ascending=False)[:10])

        NOTE: for multi-lines, a semi-colon can be used to end each line e.g.
                print("first line");
                print("second line);
        """
        help = """
        For multiple lines, use semicolons e.g.

        ```python

        fig, ax = plt.subplots();
        ax.hist(df[[col1, col2]]);
        st.pyplot(fig);
        ```
        or

        ```python
        groups = [group for _, group in df.groupby('class')];
        for i in range(3):
            st.write(groups[i]['name'].iloc[0])
            st.bar_chart(groups[i].mean())
        ```
        """
        number_cells = st.sidebar.number_input("Number of Python cells to use", value=1, max_value=40, min_value=1, help=help)
        for i in range(number_cells):
            st.markdown("<br><br><br>", unsafe_allow_html=True)
            col1, col2 = st.columns([2, 1])
            col1.write(f"> `IN[{i+1}]`")
            show_panel = col2.checkbox("Show cell config panel", key=f"panel{i}")
            user_script = code_editor("python", hint, show_panel=show_panel, key=i)
            if user_script:
                df.rename(columns={"lng": "lon"}, inplace=True) # hot-fix for "World Population" dataset
                st.code(user_script, language="python")
                st.write(f"`OUT[{i+1}]`")
                run_python_script(user_script, key=f"{user_script}{i}")


    if st.sidebar.checkbox("Show SQL cells", value=True):
        sql_cells(df)
    if st.sidebar.checkbox("Show Python cells", value=True):
        python_cells()

    st.sidebar.write("---")

    if st.sidebar.checkbox("Generate Data Profile Report", help="pandas profiling, generated by [ydata-profiling](https://github.com/ydataai/ydata-profiling)"):
        st.write("---")
        st.header("Data Profiling")
        profile = data_profiler(df)
        st_profile_report(profile)

    st.write("---")