Spaces:
Runtime error
Runtime error
azharaslam
commited on
Upload 4 files
Browse files- README (1).md +12 -0
- app.py +264 -264
- packages.txt +8 -8
- requirements.txt +5 -5
README (1).md
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Screenshot to HTML
|
3 |
+
emoji: ⚡
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: green
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.37.2
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Screenshot to HTML/CSS demo.
|
app.py
CHANGED
@@ -1,264 +1,264 @@
|
|
1 |
-
import os
|
2 |
-
import subprocess
|
3 |
-
import spaces
|
4 |
-
import torch
|
5 |
-
|
6 |
-
import gradio as gr
|
7 |
-
|
8 |
-
from gradio_client.client import DEFAULT_TEMP_DIR
|
9 |
-
from playwright.sync_api import sync_playwright
|
10 |
-
from threading import Thread
|
11 |
-
from transformers import AutoProcessor, AutoModelForCausalLM, TextIteratorStreamer
|
12 |
-
from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension
|
13 |
-
from typing import List
|
14 |
-
from PIL import Image
|
15 |
-
|
16 |
-
from transformers.image_transforms import resize, to_channel_dimension_format
|
17 |
-
|
18 |
-
|
19 |
-
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
20 |
-
|
21 |
-
DEVICE = torch.device("cuda")
|
22 |
-
PROCESSOR = AutoProcessor.from_pretrained(
|
23 |
-
"HuggingFaceM4/VLM_WebSight_finetuned",
|
24 |
-
)
|
25 |
-
MODEL = AutoModelForCausalLM.from_pretrained(
|
26 |
-
"HuggingFaceM4/VLM_WebSight_finetuned",
|
27 |
-
trust_remote_code=True,
|
28 |
-
torch_dtype=torch.bfloat16,
|
29 |
-
).to(DEVICE)
|
30 |
-
if MODEL.config.use_resampler:
|
31 |
-
image_seq_len = MODEL.config.perceiver_config.resampler_n_latents
|
32 |
-
else:
|
33 |
-
image_seq_len = (
|
34 |
-
MODEL.config.vision_config.image_size // MODEL.config.vision_config.patch_size
|
35 |
-
) ** 2
|
36 |
-
BOS_TOKEN = PROCESSOR.tokenizer.bos_token
|
37 |
-
BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
|
38 |
-
|
39 |
-
|
40 |
-
## Utils
|
41 |
-
|
42 |
-
def convert_to_rgb(image):
|
43 |
-
# `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
|
44 |
-
# for transparent images. The call to `alpha_composite` handles this case
|
45 |
-
if image.mode == "RGB":
|
46 |
-
return image
|
47 |
-
|
48 |
-
image_rgba = image.convert("RGBA")
|
49 |
-
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
|
50 |
-
alpha_composite = Image.alpha_composite(background, image_rgba)
|
51 |
-
alpha_composite = alpha_composite.convert("RGB")
|
52 |
-
return alpha_composite
|
53 |
-
|
54 |
-
# The processor is the same as the Idefics processor except for the BICUBIC interpolation inside siglip,
|
55 |
-
# so this is a hack in order to redefine ONLY the transform method
|
56 |
-
def custom_transform(x):
|
57 |
-
x = convert_to_rgb(x)
|
58 |
-
x = to_numpy_array(x)
|
59 |
-
x = resize(x, (960, 960), resample=PILImageResampling.BILINEAR)
|
60 |
-
x = PROCESSOR.image_processor.rescale(x, scale=1 / 255)
|
61 |
-
x = PROCESSOR.image_processor.normalize(
|
62 |
-
x,
|
63 |
-
mean=PROCESSOR.image_processor.image_mean,
|
64 |
-
std=PROCESSOR.image_processor.image_std
|
65 |
-
)
|
66 |
-
x = to_channel_dimension_format(x, ChannelDimension.FIRST)
|
67 |
-
x = torch.tensor(x)
|
68 |
-
return x
|
69 |
-
|
70 |
-
## End of Utils
|
71 |
-
|
72 |
-
|
73 |
-
IMAGE_GALLERY_PATHS = [
|
74 |
-
f"example_images/{ex_image}"
|
75 |
-
for ex_image in os.listdir(f"example_images")
|
76 |
-
]
|
77 |
-
|
78 |
-
|
79 |
-
def install_playwright():
|
80 |
-
try:
|
81 |
-
subprocess.run(["playwright", "install"], check=True)
|
82 |
-
print("Playwright installation successful.")
|
83 |
-
except subprocess.CalledProcessError as e:
|
84 |
-
print(f"Error during Playwright installation: {e}")
|
85 |
-
|
86 |
-
install_playwright()
|
87 |
-
|
88 |
-
|
89 |
-
def add_file_gallery(
|
90 |
-
selected_state: gr.SelectData,
|
91 |
-
gallery_list: List[str]
|
92 |
-
):
|
93 |
-
return Image.open(gallery_list.root[selected_state.index].image.path)
|
94 |
-
|
95 |
-
|
96 |
-
def render_webpage(
|
97 |
-
html_css_code,
|
98 |
-
):
|
99 |
-
with sync_playwright() as p:
|
100 |
-
browser = p.chromium.launch(headless=True)
|
101 |
-
context = browser.new_context(
|
102 |
-
user_agent=(
|
103 |
-
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0"
|
104 |
-
" Safari/537.36"
|
105 |
-
)
|
106 |
-
)
|
107 |
-
page = context.new_page()
|
108 |
-
page.set_content(html_css_code)
|
109 |
-
page.wait_for_load_state("networkidle")
|
110 |
-
output_path_screenshot = f"{DEFAULT_TEMP_DIR}/{hash(html_css_code)}.png"
|
111 |
-
_ = page.screenshot(path=output_path_screenshot, full_page=True)
|
112 |
-
|
113 |
-
context.close()
|
114 |
-
browser.close()
|
115 |
-
|
116 |
-
return Image.open(output_path_screenshot)
|
117 |
-
|
118 |
-
|
119 |
-
@spaces.GPU(duration=180)
|
120 |
-
def model_inference(
|
121 |
-
image,
|
122 |
-
):
|
123 |
-
if image is None:
|
124 |
-
raise ValueError("`image` is None. It should be a PIL image.")
|
125 |
-
|
126 |
-
inputs = PROCESSOR.tokenizer(
|
127 |
-
f"{BOS_TOKEN}<fake_token_around_image>{'<image>' * image_seq_len}<fake_token_around_image>",
|
128 |
-
return_tensors="pt",
|
129 |
-
add_special_tokens=False,
|
130 |
-
)
|
131 |
-
inputs["pixel_values"] = PROCESSOR.image_processor(
|
132 |
-
[image],
|
133 |
-
transform=custom_transform
|
134 |
-
)
|
135 |
-
inputs = {
|
136 |
-
k: v.to(DEVICE)
|
137 |
-
for k, v in inputs.items()
|
138 |
-
}
|
139 |
-
|
140 |
-
streamer = TextIteratorStreamer(
|
141 |
-
PROCESSOR.tokenizer,
|
142 |
-
skip_prompt=True,
|
143 |
-
)
|
144 |
-
generation_kwargs = dict(
|
145 |
-
inputs,
|
146 |
-
bad_words_ids=BAD_WORDS_IDS,
|
147 |
-
max_length=4096,
|
148 |
-
streamer=streamer,
|
149 |
-
)
|
150 |
-
# Regular generation version
|
151 |
-
# generation_kwargs.pop("streamer")
|
152 |
-
# generated_ids = MODEL.generate(**generation_kwargs)
|
153 |
-
# generated_text = PROCESSOR.batch_decode(
|
154 |
-
# generated_ids,
|
155 |
-
# skip_special_tokens=True
|
156 |
-
# )[0]
|
157 |
-
# rendered_page = render_webpage(generated_text)
|
158 |
-
# return generated_text, rendered_page
|
159 |
-
# Token streaming version
|
160 |
-
thread = Thread(
|
161 |
-
target=MODEL.generate,
|
162 |
-
kwargs=generation_kwargs,
|
163 |
-
)
|
164 |
-
thread.start()
|
165 |
-
generated_text = ""
|
166 |
-
for new_text in streamer:
|
167 |
-
if "</s>" in new_text:
|
168 |
-
new_text = new_text.replace("</s>", "")
|
169 |
-
rendered_image = render_webpage(generated_text)
|
170 |
-
else:
|
171 |
-
rendered_image = None
|
172 |
-
generated_text += new_text
|
173 |
-
yield generated_text, rendered_image
|
174 |
-
|
175 |
-
|
176 |
-
generated_html = gr.Code(
|
177 |
-
label="Extracted HTML",
|
178 |
-
elem_id="generated_html",
|
179 |
-
)
|
180 |
-
rendered_html = gr.Image(
|
181 |
-
label="Rendered HTML",
|
182 |
-
show_download_button=False,
|
183 |
-
show_share_button=False,
|
184 |
-
)
|
185 |
-
# rendered_html = gr.HTML(
|
186 |
-
# label="Rendered HTML"
|
187 |
-
# )
|
188 |
-
|
189 |
-
|
190 |
-
css = """
|
191 |
-
.gradio-container{max-width: 1000px!important}
|
192 |
-
h1{display: flex;align-items: center;justify-content: center;gap: .25em}
|
193 |
-
*{transition: width 0.5s ease, flex-grow 0.5s ease}
|
194 |
-
"""
|
195 |
-
|
196 |
-
|
197 |
-
with gr.Blocks(title="Screenshot to HTML", theme=gr.themes.Base(), css=css) as demo:
|
198 |
-
gr.Markdown(
|
199 |
-
"Since the model used for this demo *does not generate images*, it is more effective to input standalone website elements or sites with minimal image content."
|
200 |
-
)
|
201 |
-
with gr.Row(equal_height=True):
|
202 |
-
with gr.Column(scale=4, min_width=250) as upload_area:
|
203 |
-
imagebox = gr.Image(
|
204 |
-
type="pil",
|
205 |
-
label="Screenshot to extract",
|
206 |
-
visible=True,
|
207 |
-
sources=["upload", "clipboard"],
|
208 |
-
)
|
209 |
-
with gr.Group():
|
210 |
-
with gr.Row():
|
211 |
-
submit_btn = gr.Button(
|
212 |
-
value="▶️ Submit", visible=True, min_width=120
|
213 |
-
)
|
214 |
-
clear_btn = gr.ClearButton(
|
215 |
-
[imagebox, generated_html, rendered_html], value="🧹 Clear", min_width=120
|
216 |
-
)
|
217 |
-
regenerate_btn = gr.Button(
|
218 |
-
value="🔄 Regenerate", visible=True, min_width=120
|
219 |
-
)
|
220 |
-
with gr.Column(scale=4):
|
221 |
-
rendered_html.render()
|
222 |
-
|
223 |
-
with gr.Row():
|
224 |
-
generated_html.render()
|
225 |
-
|
226 |
-
with gr.Row():
|
227 |
-
template_gallery = gr.Gallery(
|
228 |
-
value=IMAGE_GALLERY_PATHS,
|
229 |
-
label="Templates Gallery",
|
230 |
-
allow_preview=False,
|
231 |
-
columns=5,
|
232 |
-
elem_id="gallery",
|
233 |
-
show_share_button=False,
|
234 |
-
height=400,
|
235 |
-
)
|
236 |
-
|
237 |
-
gr.on(
|
238 |
-
triggers=[
|
239 |
-
imagebox.upload,
|
240 |
-
submit_btn.click,
|
241 |
-
regenerate_btn.click,
|
242 |
-
],
|
243 |
-
fn=model_inference,
|
244 |
-
inputs=[imagebox],
|
245 |
-
outputs=[generated_html, rendered_html],
|
246 |
-
)
|
247 |
-
regenerate_btn.click(
|
248 |
-
fn=model_inference,
|
249 |
-
inputs=[imagebox],
|
250 |
-
outputs=[generated_html, rendered_html],
|
251 |
-
)
|
252 |
-
template_gallery.select(
|
253 |
-
fn=add_file_gallery,
|
254 |
-
inputs=[template_gallery],
|
255 |
-
outputs=[imagebox],
|
256 |
-
).success(
|
257 |
-
fn=model_inference,
|
258 |
-
inputs=[imagebox],
|
259 |
-
outputs=[generated_html, rendered_html],
|
260 |
-
)
|
261 |
-
demo.load()
|
262 |
-
|
263 |
-
demo.queue(max_size=40, api_open=False)
|
264 |
-
demo.launch(max_threads=400)
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
import spaces
|
4 |
+
import torch
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
from gradio_client.client import DEFAULT_TEMP_DIR
|
9 |
+
from playwright.sync_api import sync_playwright
|
10 |
+
from threading import Thread
|
11 |
+
from transformers import AutoProcessor, AutoModelForCausalLM, TextIteratorStreamer
|
12 |
+
from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension
|
13 |
+
from typing import List
|
14 |
+
from PIL import Image
|
15 |
+
|
16 |
+
from transformers.image_transforms import resize, to_channel_dimension_format
|
17 |
+
|
18 |
+
|
19 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
20 |
+
|
21 |
+
DEVICE = torch.device("cuda")
|
22 |
+
PROCESSOR = AutoProcessor.from_pretrained(
|
23 |
+
"HuggingFaceM4/VLM_WebSight_finetuned",
|
24 |
+
)
|
25 |
+
MODEL = AutoModelForCausalLM.from_pretrained(
|
26 |
+
"HuggingFaceM4/VLM_WebSight_finetuned",
|
27 |
+
trust_remote_code=True,
|
28 |
+
torch_dtype=torch.bfloat16,
|
29 |
+
).to(DEVICE)
|
30 |
+
if MODEL.config.use_resampler:
|
31 |
+
image_seq_len = MODEL.config.perceiver_config.resampler_n_latents
|
32 |
+
else:
|
33 |
+
image_seq_len = (
|
34 |
+
MODEL.config.vision_config.image_size // MODEL.config.vision_config.patch_size
|
35 |
+
) ** 2
|
36 |
+
BOS_TOKEN = PROCESSOR.tokenizer.bos_token
|
37 |
+
BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
|
38 |
+
|
39 |
+
|
40 |
+
## Utils
|
41 |
+
|
42 |
+
def convert_to_rgb(image):
|
43 |
+
# `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
|
44 |
+
# for transparent images. The call to `alpha_composite` handles this case
|
45 |
+
if image.mode == "RGB":
|
46 |
+
return image
|
47 |
+
|
48 |
+
image_rgba = image.convert("RGBA")
|
49 |
+
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
|
50 |
+
alpha_composite = Image.alpha_composite(background, image_rgba)
|
51 |
+
alpha_composite = alpha_composite.convert("RGB")
|
52 |
+
return alpha_composite
|
53 |
+
|
54 |
+
# The processor is the same as the Idefics processor except for the BICUBIC interpolation inside siglip,
|
55 |
+
# so this is a hack in order to redefine ONLY the transform method
|
56 |
+
def custom_transform(x):
|
57 |
+
x = convert_to_rgb(x)
|
58 |
+
x = to_numpy_array(x)
|
59 |
+
x = resize(x, (960, 960), resample=PILImageResampling.BILINEAR)
|
60 |
+
x = PROCESSOR.image_processor.rescale(x, scale=1 / 255)
|
61 |
+
x = PROCESSOR.image_processor.normalize(
|
62 |
+
x,
|
63 |
+
mean=PROCESSOR.image_processor.image_mean,
|
64 |
+
std=PROCESSOR.image_processor.image_std
|
65 |
+
)
|
66 |
+
x = to_channel_dimension_format(x, ChannelDimension.FIRST)
|
67 |
+
x = torch.tensor(x)
|
68 |
+
return x
|
69 |
+
|
70 |
+
## End of Utils
|
71 |
+
|
72 |
+
|
73 |
+
IMAGE_GALLERY_PATHS = [
|
74 |
+
f"example_images/{ex_image}"
|
75 |
+
for ex_image in os.listdir(f"example_images")
|
76 |
+
]
|
77 |
+
|
78 |
+
|
79 |
+
def install_playwright():
|
80 |
+
try:
|
81 |
+
subprocess.run(["playwright", "install"], check=True)
|
82 |
+
print("Playwright installation successful.")
|
83 |
+
except subprocess.CalledProcessError as e:
|
84 |
+
print(f"Error during Playwright installation: {e}")
|
85 |
+
|
86 |
+
install_playwright()
|
87 |
+
|
88 |
+
|
89 |
+
def add_file_gallery(
|
90 |
+
selected_state: gr.SelectData,
|
91 |
+
gallery_list: List[str]
|
92 |
+
):
|
93 |
+
return Image.open(gallery_list.root[selected_state.index].image.path)
|
94 |
+
|
95 |
+
|
96 |
+
def render_webpage(
|
97 |
+
html_css_code,
|
98 |
+
):
|
99 |
+
with sync_playwright() as p:
|
100 |
+
browser = p.chromium.launch(headless=True)
|
101 |
+
context = browser.new_context(
|
102 |
+
user_agent=(
|
103 |
+
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0"
|
104 |
+
" Safari/537.36"
|
105 |
+
)
|
106 |
+
)
|
107 |
+
page = context.new_page()
|
108 |
+
page.set_content(html_css_code)
|
109 |
+
page.wait_for_load_state("networkidle")
|
110 |
+
output_path_screenshot = f"{DEFAULT_TEMP_DIR}/{hash(html_css_code)}.png"
|
111 |
+
_ = page.screenshot(path=output_path_screenshot, full_page=True)
|
112 |
+
|
113 |
+
context.close()
|
114 |
+
browser.close()
|
115 |
+
|
116 |
+
return Image.open(output_path_screenshot)
|
117 |
+
|
118 |
+
|
119 |
+
@spaces.GPU(duration=180)
|
120 |
+
def model_inference(
|
121 |
+
image,
|
122 |
+
):
|
123 |
+
if image is None:
|
124 |
+
raise ValueError("`image` is None. It should be a PIL image.")
|
125 |
+
|
126 |
+
inputs = PROCESSOR.tokenizer(
|
127 |
+
f"{BOS_TOKEN}<fake_token_around_image>{'<image>' * image_seq_len}<fake_token_around_image>",
|
128 |
+
return_tensors="pt",
|
129 |
+
add_special_tokens=False,
|
130 |
+
)
|
131 |
+
inputs["pixel_values"] = PROCESSOR.image_processor(
|
132 |
+
[image],
|
133 |
+
transform=custom_transform
|
134 |
+
)
|
135 |
+
inputs = {
|
136 |
+
k: v.to(DEVICE)
|
137 |
+
for k, v in inputs.items()
|
138 |
+
}
|
139 |
+
|
140 |
+
streamer = TextIteratorStreamer(
|
141 |
+
PROCESSOR.tokenizer,
|
142 |
+
skip_prompt=True,
|
143 |
+
)
|
144 |
+
generation_kwargs = dict(
|
145 |
+
inputs,
|
146 |
+
bad_words_ids=BAD_WORDS_IDS,
|
147 |
+
max_length=4096,
|
148 |
+
streamer=streamer,
|
149 |
+
)
|
150 |
+
# Regular generation version
|
151 |
+
# generation_kwargs.pop("streamer")
|
152 |
+
# generated_ids = MODEL.generate(**generation_kwargs)
|
153 |
+
# generated_text = PROCESSOR.batch_decode(
|
154 |
+
# generated_ids,
|
155 |
+
# skip_special_tokens=True
|
156 |
+
# )[0]
|
157 |
+
# rendered_page = render_webpage(generated_text)
|
158 |
+
# return generated_text, rendered_page
|
159 |
+
# Token streaming version
|
160 |
+
thread = Thread(
|
161 |
+
target=MODEL.generate,
|
162 |
+
kwargs=generation_kwargs,
|
163 |
+
)
|
164 |
+
thread.start()
|
165 |
+
generated_text = ""
|
166 |
+
for new_text in streamer:
|
167 |
+
if "</s>" in new_text:
|
168 |
+
new_text = new_text.replace("</s>", "")
|
169 |
+
rendered_image = render_webpage(generated_text)
|
170 |
+
else:
|
171 |
+
rendered_image = None
|
172 |
+
generated_text += new_text
|
173 |
+
yield generated_text, rendered_image
|
174 |
+
|
175 |
+
|
176 |
+
generated_html = gr.Code(
|
177 |
+
label="Extracted HTML",
|
178 |
+
elem_id="generated_html",
|
179 |
+
)
|
180 |
+
rendered_html = gr.Image(
|
181 |
+
label="Rendered HTML",
|
182 |
+
show_download_button=False,
|
183 |
+
show_share_button=False,
|
184 |
+
)
|
185 |
+
# rendered_html = gr.HTML(
|
186 |
+
# label="Rendered HTML"
|
187 |
+
# )
|
188 |
+
|
189 |
+
|
190 |
+
css = """
|
191 |
+
.gradio-container{max-width: 1000px!important}
|
192 |
+
h1{display: flex;align-items: center;justify-content: center;gap: .25em}
|
193 |
+
*{transition: width 0.5s ease, flex-grow 0.5s ease}
|
194 |
+
"""
|
195 |
+
|
196 |
+
|
197 |
+
with gr.Blocks(title="Screenshot to HTML", theme=gr.themes.Base(), css=css) as demo:
|
198 |
+
gr.Markdown(
|
199 |
+
"Since the model used for this demo *does not generate images*, it is more effective to input standalone website elements or sites with minimal image content."
|
200 |
+
)
|
201 |
+
with gr.Row(equal_height=True):
|
202 |
+
with gr.Column(scale=4, min_width=250) as upload_area:
|
203 |
+
imagebox = gr.Image(
|
204 |
+
type="pil",
|
205 |
+
label="Screenshot to extract",
|
206 |
+
visible=True,
|
207 |
+
sources=["upload", "clipboard"],
|
208 |
+
)
|
209 |
+
with gr.Group():
|
210 |
+
with gr.Row():
|
211 |
+
submit_btn = gr.Button(
|
212 |
+
value="▶️ Submit", visible=True, min_width=120
|
213 |
+
)
|
214 |
+
clear_btn = gr.ClearButton(
|
215 |
+
[imagebox, generated_html, rendered_html], value="🧹 Clear", min_width=120
|
216 |
+
)
|
217 |
+
regenerate_btn = gr.Button(
|
218 |
+
value="🔄 Regenerate", visible=True, min_width=120
|
219 |
+
)
|
220 |
+
with gr.Column(scale=4):
|
221 |
+
rendered_html.render()
|
222 |
+
|
223 |
+
with gr.Row():
|
224 |
+
generated_html.render()
|
225 |
+
|
226 |
+
with gr.Row():
|
227 |
+
template_gallery = gr.Gallery(
|
228 |
+
value=IMAGE_GALLERY_PATHS,
|
229 |
+
label="Templates Gallery",
|
230 |
+
allow_preview=False,
|
231 |
+
columns=5,
|
232 |
+
elem_id="gallery",
|
233 |
+
show_share_button=False,
|
234 |
+
height=400,
|
235 |
+
)
|
236 |
+
|
237 |
+
gr.on(
|
238 |
+
triggers=[
|
239 |
+
imagebox.upload,
|
240 |
+
submit_btn.click,
|
241 |
+
regenerate_btn.click,
|
242 |
+
],
|
243 |
+
fn=model_inference,
|
244 |
+
inputs=[imagebox],
|
245 |
+
outputs=[generated_html, rendered_html],
|
246 |
+
)
|
247 |
+
regenerate_btn.click(
|
248 |
+
fn=model_inference,
|
249 |
+
inputs=[imagebox],
|
250 |
+
outputs=[generated_html, rendered_html],
|
251 |
+
)
|
252 |
+
template_gallery.select(
|
253 |
+
fn=add_file_gallery,
|
254 |
+
inputs=[template_gallery],
|
255 |
+
outputs=[imagebox],
|
256 |
+
).success(
|
257 |
+
fn=model_inference,
|
258 |
+
inputs=[imagebox],
|
259 |
+
outputs=[generated_html, rendered_html],
|
260 |
+
)
|
261 |
+
demo.load()
|
262 |
+
|
263 |
+
demo.queue(max_size=40, api_open=False)
|
264 |
+
demo.launch(max_threads=400)
|
packages.txt
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
-
libnss3
|
2 |
-
libnspr4
|
3 |
-
libatk1.0-0
|
4 |
-
libatk-bridge2.0-0
|
5 |
-
libcups2
|
6 |
-
libatspi2.0-0
|
7 |
-
libxcomposite1
|
8 |
-
libxdamage1
|
|
|
1 |
+
libnss3
|
2 |
+
libnspr4
|
3 |
+
libatk1.0-0
|
4 |
+
libatk-bridge2.0-0
|
5 |
+
libcups2
|
6 |
+
libatspi2.0-0
|
7 |
+
libxcomposite1
|
8 |
+
libxdamage1
|
requirements.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
playwright
|
2 |
-
transformers
|
3 |
-
packaging
|
4 |
-
ninja
|
5 |
-
spaces
|
6 |
torch
|
|
|
1 |
+
playwright
|
2 |
+
transformers
|
3 |
+
packaging
|
4 |
+
ninja
|
5 |
+
spaces
|
6 |
torch
|