import os from doctr.io import DocumentFile from doctr.models import ocr_predictor, from_hub import gradio as gr os.environ['USE_TORCH'] = '1' reco_model_zgh = from_hub('ayymen/crnn_mobilenet_v3_large_zgh') predictor_zgh = ocr_predictor(reco_arch=reco_model_zgh, pretrained=True) reco_model = from_hub('ayymen/crnn_mobilenet_v3_large_tifinagh') predictor = ocr_predictor(reco_arch=reco_model, pretrained=True) title = "Tifinagh OCR" description = """Upload an image to get the OCR results! Thanks to @iseddik for the data!""" def ocr(img, script): img.save("out.jpg") doc = DocumentFile.from_images("out.jpg") output = predictor_zgh(doc) if script == "Tifinagh-IRCAM" else predictor(doc) res = "" for obj in output.pages: for obj1 in obj.blocks: for obj2 in obj1.lines: for obj3 in obj2.words: res = res + " " + obj3.value res = res + "\n" res = res + "\n" _output_name = "RESULT_OCR.txt" open(_output_name, 'w', encoding="utf-8").close() # clear file with open(_output_name, "w", encoding="utf-8", errors="ignore") as f: f.write(res) print("Writing into file") return res, _output_name demo = gr.Interface(fn=ocr, inputs=[ gr.Image(type="pil"), gr.Dropdown(choices=['Tifinagh-IRCAM', 'Tifinagh'], label="Script", value="Tifinagh-IRCAM") ], outputs=[ gr.Textbox(lines=20, label="Full Text"), gr.File(label="Download OCR Results") ], title=title, description=description, examples=[ ["Examples/3.jpg", "Tifinagh-IRCAM"], ["Examples/2.jpg", "Tifinagh-IRCAM"], ["Examples/1.jpg", "Tifinagh-IRCAM"] ] ) demo.launch(debug=True)