import streamlit as st import pandas as pd import numpy as np from PIL import Image import requests import hopsworks import joblib st.set_page_config( page_title='Car Prices Predictive Analysis', page_icon='', layout='wide' ) project = hopsworks.login() fs = project.get_feature_store() @st.cache(allow_output_mutation=True,suppress_st_warning=True) def get_model(): mr = project.get_model_registry() model = mr.get_model("cc_fraud", version = 1) model_dir = model.download() return joblib.load(model_dir + "/cc_fraud_model.pkl") header = st.container() model_train = st.container() # mileage, engine, max_power, seats, age, seller_type, fuel_type, transmission_type with header: st.title("Car Prices Predictive analysis") col_a, col_b = st.columns(2) km = col_a.number_input("Kilometers Driven", 1000, 1000000, 10000, 1000) engine = col_b.number_input("Engine size (in CC)", 600, 6000, 1200, 100) power = col_a.number_input("Maximum Power in BHP", 10.0, 1000.0, 80.0, 2.0) seats = col_b.slider("Number of Seats", 2, 10, 5, 1) age = col_a.slider("Age of the car in years", 1, 10, 2) seller = col_b.selectbox( "Seller Type", ["Individual", "Dealer", "Trustmark Dealer"]) fuel = col_a.selectbox( "Fuel Type", ["Petrol", "Diesel", "CNG", "LPG", "Electric"]) transmission = col_b.selectbox( "Transmission Type", ["Manual", "Automatic"]) input_list = [km, 12, engine, power, seats, age, seller, fuel, transmission] if (input_list[6] == "Dealer"): input_list.pop(6) input_list.insert(6, 1) input_list.insert(7, 0) input_list.insert(8, 0) if (input_list[6] == "Individual"): input_list.pop(6) input_list.insert(6, 0) input_list.insert(7, 1) input_list.insert(8, 0) if (input_list[6] == "Trustmark Dealer"): input_list.pop(6) input_list.insert(6, 0) input_list.insert(7, 0) input_list.insert(8, 1) if (input_list[9] == "CNG"): input_list.pop(9) input_list.insert(9, 1) input_list.insert(10, 0) input_list.insert(11, 0) input_list.insert(12, 0) if (input_list[9] == "Diesel"): input_list.pop(9) input_list.insert(9, 0) input_list.insert(10, 1) input_list.insert(11, 0) input_list.insert(12, 0) if (input_list[9] == "Electric"): input_list.pop(9) input_list.insert(9, 0) input_list.insert(10, 0) input_list.insert(11, 1) input_list.insert(12, 0) if (input_list[9] == "Petrol"): input_list.pop(9) input_list.insert(9, 0) input_list.insert(10, 0) input_list.insert(11, 0) input_list.insert(12, 1) if (input_list[13] == "Automatic"): input_list.pop(13) input_list.insert(13, 1) input_list.insert(14, 0) if (input_list[13] == "Manual"): input_list.pop(13) input_list.insert(13, 0) input_list.insert(14, 1) df = pd.DataFrame(input_list) with model_train: disp = st.columns(5) pred_button = disp[2].button('Evaluate price') if pred_button: model = get_model() res = model.predict(df.T)[0].round(4) with st.spinner(): st.write(f'#### Evaluated price of the car(in lakhs): ₹ {res:,.4f}')