import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model = AutoModelForCausalLM.from_pretrained( "tiiuae/falcon-7b-instruct", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", low_cpu_mem_usage=True, #offload_folder="/model_files", ) tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b-instruct") def create_embedding(input_text): input_ids = tokenizer.encode(input_text, return_tensors="pt") attention_mask = torch.ones(input_ids.shape) output = model.generate( input_ids, attention_mask=attention_mask, max_length=200, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) output_text = tokenizer.decode(output[0], skip_special_tokens=True) print(output_text) return output_text instructor_model_embeddings = gr.Interface( fn=create_embedding, inputs=[ gr.inputs.Textbox(label="Input Text"), ], outputs=gr.inputs.Textbox(label="Generated Text"), title="Falcon-7B Instruct", ).launch()