Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import transformers | |
import torch | |
model = AutoModelForCausalLM.from_pretrained( | |
"tiiuae/falcon-7b-instruct", | |
torch_dtype=torch.bfloat16, | |
trust_remote_code=True, | |
device_map="auto", | |
low_cpu_mem_usage=True, | |
offload_folder="/", | |
) | |
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b-instruct") | |
def create_embedding(input_text): | |
input_ids = tokenizer.encode(input_text, return_tensors="pt") | |
attention_mask = torch.ones(input_ids.shape) | |
output = model.generate( | |
input_ids, | |
attention_mask=attention_mask, | |
max_length=200, | |
do_sample=True, | |
top_k=10, | |
num_return_sequences=1, | |
eos_token_id=tokenizer.eos_token_id, | |
) | |
output_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
print(output_text) | |
return output_text | |
instructor_model_embeddings = gr.Interface( | |
fn=create_embedding, | |
inputs=[ | |
gr.inputs.Textbox(label="Input Text"), | |
], | |
outputs=gr.inputs.Textbox(label="Generated Text"), | |
title="Falcon-7B Instruct", | |
).launch() | |