Spaces:
Runtime error
Runtime error
File size: 1,157 Bytes
08d9a62 35b8da2 08d9a62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model = AutoModelForCausalLM.from_pretrained(
"tiiuae/falcon-7b-instruct",
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
low_cpu_mem_usage=True,
#offload_folder="/model_files",
)
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b-instruct")
def create_embedding(input_text):
input_ids = tokenizer.encode(input_text, return_tensors="pt")
attention_mask = torch.ones(input_ids.shape)
output = model.generate(
input_ids,
attention_mask=attention_mask,
max_length=200,
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
)
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(output_text)
return output_text
instructor_model_embeddings = gr.Interface(
fn=create_embedding,
inputs=[
gr.inputs.Textbox(label="Input Text"),
],
outputs=gr.inputs.Textbox(label="Generated Text"),
title="Falcon-7B Instruct",
).launch()
|