File size: 7,628 Bytes
c49f0b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fea105
c49f0b0
 
ce5d7aa
c49f0b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b539f2
c49f0b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce5d7aa
c49f0b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeaab1d
c49f0b0
 
 
 
 
 
ce5d7aa
 
 
 
 
c49f0b0
aeaab1d
1b539f2
 
 
 
 
 
aeaab1d
 
 
 
 
 
 
c49f0b0
 
 
 
aeaab1d
 
 
 
 
 
 
 
 
 
c49f0b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fea105
c49f0b0
 
 
 
 
 
 
 
 
d7d431d
c49f0b0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import re
import numpy as np
import openai
import streamlit_scrollable_textbox as stx

import pinecone
import streamlit as st

st.set_page_config(layout="wide")  # isort: split

from utils import nltkmodules
from utils.entity_extraction import (
    extract_entities_docs,
    year_quarter_range,
    clean_companies,
    ticker_year_quarter_tuples_creator,
    extract_entities_keywords,
    clean_keywords_all_combs,
)
from utils.models import (
    get_alpaca_model,
    get_vicuna_ner_1_model,
    get_vicuna_ner_2_model,
    get_vicuna_text_gen_model,
    get_data,
    get_instructor_embedding_model_api,
    gpt_turbo_model,
    vicuna_text_generate,
    save_key,
)
from utils.prompts import (
    generate_prompt_alpaca_style,
    generate_multi_doc_context,
)
from utils.retriever import (
    query_pinecone,
    sentence_id_combine,
    get_indices_bm25,
)
from utils.transcript_retrieval import retrieve_transcript
from utils.vector_index import create_dense_embeddings

st.title("Question Answering on Earnings Call Transcripts")
st.write(
    "The app uses the quarterly earnings call transcripts for 10 companies (Apple, AMD, Amazon, Cisco, Google, Microsoft, Nvidia, ASML, Intel, Micron) for the years 2016 to 2020."
)

# Caching Resources and Model APIs
data = get_data()
alpaca_model = get_alpaca_model()
vicuna_ner_1_model = get_vicuna_ner_1_model()
vicuna_ner_2_model = get_vicuna_ner_2_model()
vicuna_text_gen_model = get_vicuna_text_gen_model()

# Sidebar Options

decoder_models_choice = ["GPT-3.5 Turbo", "Vicuna-7B"]

with st.sidebar:
    st.subheader("Select Options:")

    num_results = int(
        st.number_input("Number of Results to query", 1, 15, value=4)
    )

    window = int(st.number_input("Sentence Window Size", 0, 10, value=1))

    threshold = float(
        st.number_input(
            label="Similarity Score Threshold",
            step=0.05,
            format="%.2f",
            value=0.6,
        )
    )

    use_bm25 = st.checkbox("Use 2-Stage Retrieval (BM25)", value=True)
    num_candidates = int(
        st.number_input(
            "Number of Candidates to Generate:",
            25,
            200,
            step=25,
            value=50,
        )
    )
    decoder_model = st.selectbox(
        "Select Text Generation Model", decoder_models_choice
    )


col1, col2 = st.columns([3, 3], gap="medium")

with col1:
    query_text = st.text_area(
        "Input Query",
        value="How has the growth been for AMD in the PC market in 2020?",
    )

# Extracting Document Entities from Question
(
    companies,
    start_quarter,
    start_year,
    end_quarter,
    end_year,
) = extract_entities_docs(query_text, vicuna_ner_1_model)

year_quarter_range_list = year_quarter_range(
    start_quarter, start_year, end_quarter, end_year
)

ticker_list = clean_companies(companies)

ticker_year_quarter_tuples_list = ticker_year_quarter_tuples_creator(
    ticker_list, year_quarter_range_list
)


# Extract keywords from query
all_keywords = extract_entities_keywords(query_text, vicuna_ner_2_model)
if all_keywords != []:
    keywords = clean_keywords_all_combs(all_keywords)
else:
    keywords = None


# Connect to PineCone Vector Database - Instructor Model

pinecone.init(
    api_key=st.secrets["pinecone_instructor"],
    environment="us-west4-gcp-free",
)

pinecone_index_name = "week13-instructor-xl"
pinecone_index = pinecone.Index(pinecone_index_name)
retriever_model = get_instructor_embedding_model_api()
instruction = (
    "Represent the financial question for retrieving supporting documents:"
)


dense_query_embedding = create_dense_embeddings(
    query_text, retriever_model, instruction
)

context_group = []
if ticker_year_quarter_tuples_list != []:
    for ticker, quarter, year in ticker_year_quarter_tuples_list:
        if use_bm25 == True:
            indices = get_indices_bm25(
                data, ticker, quarter, year, num_candidates
            )
        else:
            indices = None

        query_results = query_pinecone(
            dense_query_embedding,
            num_results,
            pinecone_index,
            year,
            quarter,
            ticker,
            keywords,
            indices,
            threshold,
        )
        context = sentence_id_combine(data, query_results, lag=window)
        context_group.append((context, year, quarter, ticker))

    multi_doc_context = generate_multi_doc_context(context_group)

else:
    indices = None

    query_results = query_pinecone(
        dense_query_embedding,
        num_results,
        pinecone_index,
        None,
        None,
        None,
        keywords,
        indices,
        threshold,
    )
    multi_doc_context = sentence_id_combine(data, query_results, lag=window)


prompt = generate_prompt_alpaca_style(query_text, multi_doc_context)

with col1:
    edited_prompt = st.text_area(
        label="Model Prompt", value=prompt, height=400
    )

if decoder_model == "GPT-3.5 Turbo":
    with col2:
        with st.form("gpt_form"):
            openai_key = st.text_input(
                "Enter OpenAI key",
                value="",
                type="password",
            )
            gpt_submitted = st.form_submit_button("Submit")
            if gpt_submitted:
                api_key = save_key(openai_key)
                openai.api_key = api_key
                generated_text = gpt_turbo_model(edited_prompt)

                st.subheader("Answer:")
                regex_pattern_sentences = (
                    "(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s"
                )
                generated_text_list = re.split(
                    regex_pattern_sentences, generated_text
                )
                for answer_text in generated_text_list:
                    answer_text = f"""{answer_text}"""
                    st.write(
                        f"<ul><li><p>{answer_text}</p></li></ul>",
                        unsafe_allow_html=True,
                    )

if decoder_model == "Vicuna-7B":
    with col2:
        st.write("The Vicuna Model is running: ...")
        st.write("The model takes 10-15 mins to generate the text.")
        generated_text = vicuna_text_generate(prompt, vicuna_text_gen_model)
        st.subheader("Answer:")
        regex_pattern_sentences = "(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s"
        generated_text_list = re.split(regex_pattern_sentences, generated_text)
        for answer_text in generated_text_list:
            answer_text = f"""{answer_text}"""
            st.write(
                f"<ul><li><p>{answer_text}</p></li></ul>",
                unsafe_allow_html=True,
            )


tab1, tab2 = st.tabs(["Retrieved Text", "Retrieved Documents"])


with tab1:
    with st.expander("See Retrieved Text"):
        st.subheader("Retrieved Text:")
        st.write(
            f"<p>{multi_doc_context}</p>",
            unsafe_allow_html=True,
        )

with tab2:

    if ticker_year_quarter_tuples_list != []:
        for ticker, quarter, year in ticker_year_quarter_tuples_list:
            file_text = retrieve_transcript(data, year, quarter, ticker)
            with st.expander(f"See Transcript - {quarter} {year}"):
                st.subheader(f"Earnings Call Transcript - {quarter} {year}:")
                stx.scrollableTextbox(
                    file_text,
                    height=700,
                    border=False,
                    fontFamily="Helvetica",
                )

    else:
        st.write(
            "No specific document/documents found. Please mention Ticker and Duration in the Question."
        )