awinml's picture
Upload 2 files
287764b
raw
history blame
563 Bytes
import gradio as gr
import numpy as np
from InstructorEmbedding import INSTRUCTOR
model = INSTRUCTOR('hkunlp/instructor-xl')
def create_embedding(query_instruction, query):
embeddings = model.encode([[query_instruction, query]])[0].tolist()
#embeddings_array = np.array(embeddings)
return embeddings
instructor_model_embeddings = gr.Interface(
fn=create_embedding,
inputs=[
gr.inputs.Textbox(label="Query_Instruction"),
gr.inputs.Textbox(label="Query")
],
outputs="list",
title="API-Instructor-XL-1",
).launch()