File size: 4,917 Bytes
f9da573
 
 
 
e133330
f9da573
 
 
 
 
 
 
 
1602adf
f9da573
 
 
 
 
8d46199
f9da573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d46199
f9da573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d46199
f9da573
 
 
 
 
 
 
 
 
9975133
2b221a0
cc50220
2b221a0
 
 
 
 
 
 
 
 
 
b83e857
9975133
 
 
8d46199
9975133
 
 
 
 
 
 
 
f9da573
 
9975133
f9da573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d46199
f9da573
 
2b221a0
f9da573
8d46199
f9da573
2b221a0
f9da573
8d46199
f9da573
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import streamlit as st
import pandas as pd
import pandas as pd
from tqdm import tqdm
import pinecone
import torch
from sentence_transformers import SentenceTransformer
from transformers import (
    pipeline,
    AutoTokenizer,
    AutoModelForCausalLM,
    AutoModelForSeq2SeqLM,
)
import openai
import streamlit_scrollable_textbox as stx


@st.experimental_singleton
def get_data():
    data = pd.read_csv("earnings_calls_cleaned_metadata.csv")
    return data


# Initialize models from HuggingFace


@st.experimental_singleton
def get_t5_model():
    return pipeline("summarization", model="t5-small", tokenizer="t5-small")


@st.experimental_singleton
def get_flan_t5_model():
    return pipeline(
        "summarization", model="google/flan-t5-small", tokenizer="google/flan-t5-small"
    )


@st.experimental_singleton
def get_mpnet_embedding_model():
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model = SentenceTransformer(
        "sentence-transformers/all-mpnet-base-v2", device=device
    )
    model.max_seq_length = 512
    return model


@st.experimental_singleton
def get_sgpt_embedding_model():
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model = SentenceTransformer(
        "Muennighoff/SGPT-125M-weightedmean-nli-bitfit", device=device
    )
    model.max_seq_length = 512
    return model


@st.experimental_memo
def save_key(api_key):
    return api_key


def query_pinecone(query, top_k, model, index, year, quarter, ticker, threshold=0.5):
    # generate embeddings for the query
    xq = model.encode([query]).tolist()
    # search pinecone index for context passage with the answer
    xc = index.query(
        xq,
        top_k=top_k,
        filter={
            "Year": int(year),
            "Quarter": {"$eq": quarter},
            "Ticker": {"$eq": ticker},
            "QA_Flag": {"$eq": "Answer"},
        },
        include_metadata=True,
    )
    # filter the context passages based on the score threshold
    filtered_matches = []
    for match in xc["matches"]:
        if match["score"] >= threshold:
            filtered_matches.append(match)
    xc["matches"] = filtered_matches
    return xc


def format_query(query_results):
    # extract passage_text from Pinecone search result
    context = [result["metadata"]["Text"] for result in query_results["matches"]]
    return context


def sentence_id_combine(data, query_results, lag=2):
    # Extract sentence IDs from query results
    ids = [result["metadata"]["Sentence_id"] for result in query_results["matches"]]
    # Generate new IDs by adding a lag value to the original IDs
    new_ids = [id + i for id in ids for i in range(-lag, lag + 1)]
    # Remove duplicates and sort the new IDs
    new_ids = sorted(set(new_ids))
    # Create a list of lookup IDs by grouping the new IDs in groups of lag*2+1
    lookup_ids = [
        new_ids[i : i + (lag * 2 + 1)] for i in range(0, len(new_ids), lag * 2 + 1)
    ]
    # Create a list of context sentences by joining the sentences corresponding to the lookup IDs
    context_list = [
        " ".join(data.Text.iloc[lookup_id].to_list()) for lookup_id in lookup_ids
    ]
    return context_list


def text_lookup(data, sentence_ids):
    context = ". ".join(data.iloc[sentence_ids].to_list())
    return context


def generate_prompt(query_text, context_list):
    context = " \n\n".join(context_list)
    prompt = f"""Answer the question as truthfully as possible using the provided text. Try to include as many key details as possible and format the answer in points.

    Context: 
    {context}
    
    Q: {query_text} 
    A:"""
    return prompt


def generate_prompt_2(query_text, context_list):
    context = " \n\n".join(context_list)
    prompt = f"""
    Context information is below: 
    ---------------------
    {context}
    ---------------------
    Given the context information and prior knowledge, answer this question:
    {query_text} 
    Try to include as many key details as possible and format the answer in points."""
    return prompt


def gpt_model(prompt):
    response = openai.Completion.create(
        model="text-davinci-003",
        prompt=prompt,
        temperature=0.1,
        max_tokens=512,
        top_p=1.0,
        frequency_penalty=0.0,
        presence_penalty=1,
    )
    return response.choices[0].text


# Transcript Retrieval


def retrieve_transcript(data, year, quarter, ticker):
    row = (
        data.loc[
            (data.Year == int(year))
            & (data.Quarter == quarter)
            & (data.Ticker == ticker),
            ["File_Name"],
        ]
        .drop_duplicates()
        .iloc[0, 0]
    )
    print(row)
    # convert row to a string and join values with "-"
    # row_str = "-".join(row.astype(str)) + ".txt"
    open_file = open(
        f"Transcripts/{ticker}/{row}",
        "r",
    )
    file_text = open_file.read()
    return file_text