File size: 6,769 Bytes
c5e4524
36ce206
a7fc504
 
36ce206
a7fc504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1227998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7fc504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1227998
a7fc504
 
c5e4524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import re

from nltk.stem import PorterStemmer, WordNetLemmatizer

# Keyword Extraction


def expand_list_of_lists(list_of_lists):
    """
    Expands a list of lists of strings to a list of strings.
    Args:
      list_of_lists: A list of lists of strings.
    Returns:
      A list of strings.
    """

    expanded_list = []
    for inner_list in list_of_lists:
        for string in inner_list:
            expanded_list.append(string)
    return expanded_list


def keywords_no_companies(texts):
    # Company list (to remove companies from extracted entities)

    company_list = [
        "apple",
        "amd",
        "amazon",
        "cisco",
        "google",
        "microsoft",
        "nvidia",
        "asml",
        "intel",
        "micron",
        "aapl",
        "csco",
        "msft",
        "asml",
        "nvda",
        "googl",
        "mu",
        "intc",
        "amzn",
        "amd",
    ]

    texts = [text.split(" ") for text in texts]
    texts = expand_list_of_lists(texts)

    # Convert all strings to lowercase.
    lower_texts = [text.lower() for text in texts]
    keywords = [text for text in lower_texts if text not in company_list]
    return keywords


def all_keywords_combs(texts):

    texts = [text.split(" ") for text in texts]
    texts = expand_list_of_lists(texts)

    # Convert all strings to lowercase.
    lower_texts = [text.lower() for text in texts]

    # Stem the words in each string.
    stemmer = PorterStemmer()
    stem_texts = [stemmer.stem(text) for text in texts]

    # Lemmatize the words in each string.
    lemmatizer = WordNetLemmatizer()
    lemm_texts = [lemmatizer.lemmatize(text) for text in texts]

    texts.extend(lower_texts)
    texts.extend(stem_texts)
    texts.extend(lemm_texts)
    return texts


def extract_keywords(query_text, model):
    prompt = f"###Instruction:Extract the important keywords which describe the context accurately.\n\nInput:{query_text}\n\n###Response:"
    response = model.predict(prompt)
    keywords = response.split(", ")
    keywords = keywords_no_companies(keywords)
    return keywords


# Entity Extraction


def generate_alpaca_ner_prompt(query):
    prompt = f"""Below is an instruction that describes a task, paired with an input that provides further context. Use the following guidelines to extract the entities representing the Company, Quarter, and Year in the sentence.

### Instruction:
- The output should be in the form "Company - Value, Quarter - Value, Year - Value".
- The output should be in the form "Company - None, Quarter - None, Year - None", if no entities are found.
- Only use entities that exist in the final sentence.
- If Company cannot be found in the sentence, return "none" for that entity.
- If Quarter cannot be found in the sentence, return "none" for that entity.
- If Year cannot be found in the sentence, return "none" for that entity.
- If there is ambiguity finding the entity, return "none" for that entity.

### Input:

What was discussed regarding Services revenue performance in Apple's Q3 2020 earnings call?
Company - Apple, Quarter - Q3, Year - 2020

How has the growth in Q1 been for the consumer market as seen by AMD?
Company - AMD, Quarter - Q1, Year - none

What was the long term view on GOOGL's cloud business growth as discussed in their earnings call?
Company - Google, Quarter - none, Year - none

What is Nvidia's outlook in the data center business in Q3 2020?
Company - Nvidia, Quarter - Q3, Year - 2020

What are the expansion plans of Amazon in the Asia Pacific region as discussed in their earnings call?
Company - Amazon, Quarter - none, Year - none

What did the Analysts ask about CSCO's cybersecurity business in the earnings call in 2016?
Company - Cisco, Quarter - none, Year - 2016


{query}
### Response:"""
    return prompt


def format_entities_flan_alpaca(values):
    """
    Extracts the text for each entity from the output generated by the
    Flan-Alpaca model.
    """
    try:
        company_string, quarter_string, year_string = values.split(", ")
    except:
        company = None
        quarter = None
        year = None
    try:
        company = company_string.split(" - ")[1].lower()
        company = None if company.lower() == "none" else company
    except:
        company = None
    try:
        quarter = quarter_string.split(" - ")[1]
        quarter = None if quarter.lower() == "none" else quarter

    except:
        quarter = None
    try:
        year = year_string.split(" - ")[1]
        year = None if year.lower() == "none" else year

    except:
        year = None

    print((company, quarter, year))
    return company, quarter, year


def extract_quarter_year(string):
    # Extract year from string
    year_match = re.search(r"\d{4}", string)
    if year_match:
        year = year_match.group()
    else:
        year = None

    # Extract quarter from string
    quarter_match = re.search(r"Q\d", string)
    if quarter_match:
        quarter = "Q" + quarter_match.group()[1]
    else:
        quarter = None

    return quarter, year


def extract_ticker_spacy(query, model):
    doc = model(query)
    entities = {ent.label_: ent.text for ent in doc.ents}
    print(entities.keys())
    if "ORG" in entities.keys():
        company = entities["ORG"].lower()
    else:
        company = None
    return company


def clean_entities(company, quarter, year):
    company_ticker_map = {
        "apple": "AAPL",
        "amd": "AMD",
        "amazon": "AMZN",
        "cisco": "CSCO",
        "google": "GOOGL",
        "microsoft": "MSFT",
        "nvidia": "NVDA",
        "asml": "ASML",
        "intel": "INTC",
        "micron": "MU",
    }

    ticker_choice = [
        "AAPL",
        "CSCO",
        "MSFT",
        "ASML",
        "NVDA",
        "GOOGL",
        "MU",
        "INTC",
        "AMZN",
        "AMD",
    ]
    year_choice = ["2020", "2019", "2018", "2017", "2016", "All"]
    quarter_choice = ["Q1", "Q2", "Q3", "Q4", "All"]
    if company is not None:
        if company in company_ticker_map.keys():
            ticker = company_ticker_map[company]
            ticker_index = ticker_choice.index(ticker)
        else:
            ticker_index = 0
    else:
        ticker_index = 0
    if quarter is not None:
        if quarter in quarter_choice:
            quarter_index = quarter_choice.index(quarter)
        else:
            quarter_index = len(quarter_choice) - 1
    else:
        quarter_index = len(quarter_choice) - 1
    if year is not None:
        if year in year_choice:
            year_index = year_choice.index(year)
        else:
            year_index = len(year_choice) - 1
    else:
        year_index = len(year_choice) - 1
    return ticker_index, quarter_index, year_index