Spaces:
Runtime error
Runtime error
MarcSkovMadsen
commited on
Commit
·
2c150e9
1
Parent(s):
7390946
update
Browse files- Dockerfile +1 -1
- app.py +99 -19
- utils.py +23 -6
Dockerfile
CHANGED
@@ -9,7 +9,7 @@ RUN python3 -m pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
|
9 |
COPY . .
|
10 |
RUN python3 download_datasets.py
|
11 |
|
12 |
-
CMD ["panel", "serve", "/code/app.py", "--address", "0.0.0.0", "--port", "7860", "--allow-websocket-origin", "*", "--num-procs", "4", "--index", "app"]
|
13 |
|
14 |
RUN chmod 777 data
|
15 |
|
|
|
9 |
COPY . .
|
10 |
RUN python3 download_datasets.py
|
11 |
|
12 |
+
CMD ["panel", "serve", "/code/app.py", "--address", "0.0.0.0", "--port", "7860", "--allow-websocket-origin", "*", "--num-procs", "4", "--index", "app", "--reuse-sessions"]
|
13 |
|
14 |
RUN chmod 777 data
|
15 |
|
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import dask.dataframe as dd
|
2 |
import holoviews as hv
|
3 |
import numpy as np
|
|
|
4 |
import panel as pn
|
5 |
import param
|
6 |
from holoviews.operation.datashader import dynspread, rasterize
|
@@ -10,10 +11,13 @@ from utils import (
|
|
10 |
DATASHADER_LOGO,
|
11 |
DATASHADER_URL,
|
12 |
DESCRIPTION,
|
|
|
|
|
13 |
MAJOR_TOM_LOGO,
|
14 |
MAJOR_TOM_LYRICS,
|
15 |
MAJOR_TOM_PICTURE,
|
16 |
MAJOR_TOM_REF_URL,
|
|
|
17 |
PANEL_LOGO,
|
18 |
PANEL_URL,
|
19 |
get_closest_rows,
|
@@ -52,8 +56,11 @@ class MapInput(pn.viewable.Viewer):
|
|
52 |
updating = param.Boolean()
|
53 |
|
54 |
def __panel__(self):
|
55 |
-
return pn.
|
56 |
-
|
|
|
|
|
|
|
57 |
)
|
58 |
|
59 |
@param.depends("data", watch=True, on_init=True)
|
@@ -64,10 +71,8 @@ class MapInput(pn.viewable.Viewer):
|
|
64 |
data_dask, kdims=["centre_easting", "centre_northing"], vdims=[]
|
65 |
)
|
66 |
|
67 |
-
mean_easting = np.mean(points.range("centre_easting"))
|
68 |
-
mean_northing = np.mean(points.range("centre_northing"))
|
69 |
rangexy = hv.streams.RangeXY(source=points)
|
70 |
-
tap = hv.streams.Tap(source=points, x=
|
71 |
|
72 |
agg = rasterize(
|
73 |
points, link_inputs=True, x_sampling=0.0001, y_sampling=0.0001
|
@@ -75,13 +80,13 @@ class MapInput(pn.viewable.Viewer):
|
|
75 |
dyn = dynspread(agg)
|
76 |
dyn.opts(cmap="kr_r", colorbar=True)
|
77 |
|
78 |
-
pointerx = hv.streams.PointerX(x=
|
79 |
-
pointery = hv.streams.PointerY(y=
|
80 |
vline = hv.DynamicMap(lambda x: hv.VLine(x), streams=[pointerx])
|
81 |
hline = hv.DynamicMap(lambda y: hv.HLine(y), streams=[pointery])
|
82 |
tiles = hv.Tiles(
|
83 |
"https://tile.openstreetmap.org/{Z}/{X}/{Y}.png", name="OSM"
|
84 |
-
).opts(
|
85 |
|
86 |
self.param.update(
|
87 |
_plot=tiles * agg * dyn * hline * vline,
|
@@ -106,7 +111,7 @@ class MapInput(pn.viewable.Viewer):
|
|
106 |
|
107 |
def _update_data_in_view(self, x_range, y_range):
|
108 |
if not x_range or not y_range:
|
109 |
-
self.data_in_view = self.data
|
110 |
return
|
111 |
|
112 |
data = self.data
|
@@ -114,16 +119,24 @@ class MapInput(pn.viewable.Viewer):
|
|
114 |
(data.centre_easting.between(*x_range))
|
115 |
& (data.centre_northing.between(*y_range))
|
116 |
]
|
117 |
-
self.data_in_view = data.
|
118 |
|
119 |
def _update_data_selected(self, tap_x, tap_y):
|
120 |
self.data_selected = get_closest_rows(self.data, tap_x, tap_y)
|
121 |
|
|
|
|
|
|
|
|
|
122 |
|
123 |
class ImageInput(pn.viewable.Viewer):
|
124 |
data = param.DataFrame(allow_refs=True, allow_None=False)
|
125 |
-
|
|
|
|
|
126 |
updating = param.Boolean()
|
|
|
|
|
127 |
image = param.Parameter()
|
128 |
plot = param.Parameter()
|
129 |
|
@@ -131,12 +144,19 @@ class ImageInput(pn.viewable.Viewer):
|
|
131 |
|
132 |
def __panel__(self):
|
133 |
return pn.Column(
|
134 |
-
pn.
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
),
|
137 |
pn.Tabs(
|
138 |
pn.pane.HoloViews(
|
139 |
-
|
140 |
loading=self.param.updating,
|
141 |
height=800,
|
142 |
width=800,
|
@@ -148,6 +168,13 @@ class ImageInput(pn.viewable.Viewer):
|
|
148 |
loading=self.param.updating,
|
149 |
width=800,
|
150 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
dynamic=True,
|
152 |
),
|
153 |
)
|
@@ -167,16 +194,69 @@ class ImageInput(pn.viewable.Viewer):
|
|
167 |
if not self._timestamp in options:
|
168 |
self._timestamp = default_value
|
169 |
|
170 |
-
@
|
171 |
-
def
|
|
|
|
|
|
|
|
|
172 |
if self.data.empty or not self._timestamp:
|
173 |
-
self.
|
|
|
|
|
174 |
else:
|
175 |
with self.param.update(updating=True):
|
176 |
row = self.data[self.data.timestamp == self._timestamp].iloc[0]
|
177 |
-
self.
|
|
|
178 |
image_array = np.array(image)
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
|
182 |
class App(param.Parameterized):
|
|
|
1 |
import dask.dataframe as dd
|
2 |
import holoviews as hv
|
3 |
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
import panel as pn
|
6 |
import param
|
7 |
from holoviews.operation.datashader import dynspread, rasterize
|
|
|
11 |
DATASHADER_LOGO,
|
12 |
DATASHADER_URL,
|
13 |
DESCRIPTION,
|
14 |
+
ESA_EASTING,
|
15 |
+
ESA_NORTHING,
|
16 |
MAJOR_TOM_LOGO,
|
17 |
MAJOR_TOM_LYRICS,
|
18 |
MAJOR_TOM_PICTURE,
|
19 |
MAJOR_TOM_REF_URL,
|
20 |
+
META_DATA_COLUMNS,
|
21 |
PANEL_LOGO,
|
22 |
PANEL_URL,
|
23 |
get_closest_rows,
|
|
|
56 |
updating = param.Boolean()
|
57 |
|
58 |
def __panel__(self):
|
59 |
+
return pn.Column(
|
60 |
+
pn.pane.HoloViews(
|
61 |
+
self._plot, height=550, width=800, loading=self.param.updating
|
62 |
+
),
|
63 |
+
self._description,
|
64 |
)
|
65 |
|
66 |
@param.depends("data", watch=True, on_init=True)
|
|
|
71 |
data_dask, kdims=["centre_easting", "centre_northing"], vdims=[]
|
72 |
)
|
73 |
|
|
|
|
|
74 |
rangexy = hv.streams.RangeXY(source=points)
|
75 |
+
tap = hv.streams.Tap(source=points, x=ESA_EASTING, y=ESA_NORTHING)
|
76 |
|
77 |
agg = rasterize(
|
78 |
points, link_inputs=True, x_sampling=0.0001, y_sampling=0.0001
|
|
|
80 |
dyn = dynspread(agg)
|
81 |
dyn.opts(cmap="kr_r", colorbar=True)
|
82 |
|
83 |
+
pointerx = hv.streams.PointerX(x=ESA_EASTING, source=points)
|
84 |
+
pointery = hv.streams.PointerY(y=ESA_NORTHING, source=points)
|
85 |
vline = hv.DynamicMap(lambda x: hv.VLine(x), streams=[pointerx])
|
86 |
hline = hv.DynamicMap(lambda y: hv.HLine(y), streams=[pointery])
|
87 |
tiles = hv.Tiles(
|
88 |
"https://tile.openstreetmap.org/{Z}/{X}/{Y}.png", name="OSM"
|
89 |
+
).opts(xlabel="Longitude", ylabel="Latitude")
|
90 |
|
91 |
self.param.update(
|
92 |
_plot=tiles * agg * dyn * hline * vline,
|
|
|
111 |
|
112 |
def _update_data_in_view(self, x_range, y_range):
|
113 |
if not x_range or not y_range:
|
114 |
+
self.data_in_view = self.data
|
115 |
return
|
116 |
|
117 |
data = self.data
|
|
|
119 |
(data.centre_easting.between(*x_range))
|
120 |
& (data.centre_northing.between(*y_range))
|
121 |
]
|
122 |
+
self.data_in_view = data.reset_index(drop=True)
|
123 |
|
124 |
def _update_data_selected(self, tap_x, tap_y):
|
125 |
self.data_selected = get_closest_rows(self.data, tap_x, tap_y)
|
126 |
|
127 |
+
@pn.depends("data_in_view")
|
128 |
+
def _description(self):
|
129 |
+
return f"Rows: {len(self.data_in_view):,}"
|
130 |
+
|
131 |
|
132 |
class ImageInput(pn.viewable.Viewer):
|
133 |
data = param.DataFrame(allow_refs=True, allow_None=False)
|
134 |
+
column_name = param.Selector(
|
135 |
+
default="Thumbnail", objects=list(META_DATA_COLUMNS), label="Image Type"
|
136 |
+
)
|
137 |
updating = param.Boolean()
|
138 |
+
|
139 |
+
meta_data = param.DataFrame()
|
140 |
image = param.Parameter()
|
141 |
plot = param.Parameter()
|
142 |
|
|
|
144 |
|
145 |
def __panel__(self):
|
146 |
return pn.Column(
|
147 |
+
pn.Row(
|
148 |
+
pn.widgets.RadioButtonGroup.from_param(
|
149 |
+
self.param._timestamp,
|
150 |
+
button_style="outline",
|
151 |
+
align="end",
|
152 |
+
),
|
153 |
+
pn.widgets.Select.from_param(
|
154 |
+
self.param.column_name, disabled=self.param.updating
|
155 |
+
),
|
156 |
),
|
157 |
pn.Tabs(
|
158 |
pn.pane.HoloViews(
|
159 |
+
self.param.plot,
|
160 |
loading=self.param.updating,
|
161 |
height=800,
|
162 |
width=800,
|
|
|
168 |
loading=self.param.updating,
|
169 |
width=800,
|
170 |
),
|
171 |
+
pn.widgets.Tabulator(
|
172 |
+
self.param.meta_data,
|
173 |
+
name="Meta Data",
|
174 |
+
loading=self.param.updating,
|
175 |
+
disabled=True,
|
176 |
+
),
|
177 |
+
pn.pane.Markdown(self.code, name="Code"),
|
178 |
dynamic=True,
|
179 |
),
|
180 |
)
|
|
|
194 |
if not self._timestamp in options:
|
195 |
self._timestamp = default_value
|
196 |
|
197 |
+
@property
|
198 |
+
def column(self):
|
199 |
+
return META_DATA_COLUMNS[self.column_name]
|
200 |
+
|
201 |
+
@pn.depends("_timestamp", "column_name", watch=True, on_init=True)
|
202 |
+
def _update_plot(self):
|
203 |
if self.data.empty or not self._timestamp:
|
204 |
+
self.meta_data = self.data.T
|
205 |
+
self.image = None
|
206 |
+
self.plot = hv.RGB(np.array([]))
|
207 |
else:
|
208 |
with self.param.update(updating=True):
|
209 |
row = self.data[self.data.timestamp == self._timestamp].iloc[0]
|
210 |
+
self.meta_data = pd.DataFrame(row)
|
211 |
+
self.image = image = pn.cache(get_image)(row, self.column)
|
212 |
image_array = np.array(image)
|
213 |
+
if image_array.ndim == 2:
|
214 |
+
self.plot = hv.Image(image_array).opts(
|
215 |
+
cmap="gray_r", xaxis=None, yaxis=None, colorbar=True
|
216 |
+
)
|
217 |
+
else:
|
218 |
+
self.plot = hv.RGB(image_array).opts(xaxis=None, yaxis=None)
|
219 |
+
|
220 |
+
@pn.depends("meta_data", "column_name")
|
221 |
+
def code(self):
|
222 |
+
if self.meta_data.empty:
|
223 |
+
return ""
|
224 |
+
|
225 |
+
parquet_url = self.meta_data.T["parquet_url"].iloc[0]
|
226 |
+
parquet_row = self.meta_data.T["parquet_row"].iloc[0]
|
227 |
+
return f"""\
|
228 |
+
```python
|
229 |
+
from io import BytesIO
|
230 |
+
|
231 |
+
import holoviews as hv
|
232 |
+
import numpy as np
|
233 |
+
import panel as pn
|
234 |
+
import pyarrow.parquet as pq
|
235 |
+
from fsspec.parquet import open_parquet_file
|
236 |
+
from PIL import Image
|
237 |
+
|
238 |
+
pn.extension()
|
239 |
+
|
240 |
+
parquet_url = "{parquet_url}"
|
241 |
+
parquet_row = {parquet_row}
|
242 |
+
column = "{self.column}"
|
243 |
+
with open_parquet_file(parquet_url, columns=[column]) as f:
|
244 |
+
with pq.ParquetFile(f) as pf:
|
245 |
+
first_row_group = pf.read_row_group(parquet_row, columns=[column])
|
246 |
+
|
247 |
+
stream = BytesIO(first_row_group[column][0].as_py())
|
248 |
+
image = Image.open(stream)
|
249 |
+
image_array = np.array(image)
|
250 |
+
if image_array.ndim==2:
|
251 |
+
plot = hv.Image(image_array).opts(cmap="gray", colorbar=True)
|
252 |
+
else:
|
253 |
+
plot = hv.RGB(image_array)
|
254 |
+
|
255 |
+
plot.opts(xaxis=None, yaxis=None)
|
256 |
+
|
257 |
+
pn.panel(plot).servable()
|
258 |
+
```
|
259 |
+
"""
|
260 |
|
261 |
|
262 |
class App(param.Parameterized):
|
utils.py
CHANGED
@@ -20,6 +20,24 @@ DATASHADER_LOGO = "https://datashader.org/_static/logo_horizontal.svg"
|
|
20 |
DATASHADER_URL = "https://datashader.org/"
|
21 |
REPOSITORY = "Major-TOM"
|
22 |
DATASETS = ["Core-S2L2A", "Core-S2L1C"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
DATA_PATH = Path(__file__).parent / "data"
|
25 |
|
@@ -129,16 +147,15 @@ def get_meta_data(dataset="Core-S2L2A", repository=REPOSITORY):
|
|
129 |
return data
|
130 |
|
131 |
|
132 |
-
def get_image(row):
|
133 |
parquet_url = row["parquet_url"]
|
134 |
parquet_row = row["parquet_row"]
|
135 |
-
print(parquet_url)
|
136 |
-
|
137 |
-
with open_parquet_file(parquet_url, columns=["thumbnail"]) as f:
|
138 |
with pq.ParquetFile(f) as pf:
|
139 |
-
first_row_group = pf.read_row_group(parquet_row, columns=[
|
140 |
|
141 |
-
stream = BytesIO(first_row_group[
|
142 |
image = Image.open(stream)
|
143 |
return image
|
144 |
|
|
|
20 |
DATASHADER_URL = "https://datashader.org/"
|
21 |
REPOSITORY = "Major-TOM"
|
22 |
DATASETS = ["Core-S2L2A", "Core-S2L1C"]
|
23 |
+
ESA_EASTING = 250668.73322714816
|
24 |
+
ESA_NORTHING = 6259216.653115547
|
25 |
+
META_DATA_COLUMNS = {
|
26 |
+
"Coastal aerosol": "B01",
|
27 |
+
"Blue": "B02",
|
28 |
+
"Green": "B03",
|
29 |
+
"Red": "B04",
|
30 |
+
"Vegetation Blue": "B05",
|
31 |
+
"Vegetation Green": "B06",
|
32 |
+
"Vegetation Red": "B07",
|
33 |
+
"NIR": "B08",
|
34 |
+
"Narrow NIR": "B8A",
|
35 |
+
"Water vapour": "B09",
|
36 |
+
"SWIR, 1613.7": "B11",
|
37 |
+
"SWIR, 2202.4": "B12",
|
38 |
+
"Cloud Mask": "cloud_mask",
|
39 |
+
"Thumbnail": "thumbnail",
|
40 |
+
}
|
41 |
|
42 |
DATA_PATH = Path(__file__).parent / "data"
|
43 |
|
|
|
147 |
return data
|
148 |
|
149 |
|
150 |
+
def get_image(row, column="thumbnail"):
|
151 |
parquet_url = row["parquet_url"]
|
152 |
parquet_row = row["parquet_row"]
|
153 |
+
print(parquet_url, parquet_row, column)
|
154 |
+
with open_parquet_file(parquet_url, columns=[column]) as f:
|
|
|
155 |
with pq.ParquetFile(f) as pf:
|
156 |
+
first_row_group = pf.read_row_group(parquet_row, columns=[column])
|
157 |
|
158 |
+
stream = BytesIO(first_row_group[column][0].as_py())
|
159 |
image = Image.open(stream)
|
160 |
return image
|
161 |
|