heheyas
init
cfb7702
import math
import os
from typing import List, Optional, Union
import numpy as np
import torch
from einops import rearrange
from imwatermark import WatermarkEncoder
from omegaconf import ListConfig
from PIL import Image
from torch import autocast
from sgm.util import append_dims
class WatermarkEmbedder:
def __init__(self, watermark):
self.watermark = watermark
self.num_bits = len(WATERMARK_BITS)
self.encoder = WatermarkEncoder()
self.encoder.set_watermark("bits", self.watermark)
def __call__(self, image: torch.Tensor) -> torch.Tensor:
"""
Adds a predefined watermark to the input image
Args:
image: ([N,] B, RGB, H, W) in range [0, 1]
Returns:
same as input but watermarked
"""
squeeze = len(image.shape) == 4
if squeeze:
image = image[None, ...]
n = image.shape[0]
image_np = rearrange(
(255 * image).detach().cpu(), "n b c h w -> (n b) h w c"
).numpy()[:, :, :, ::-1]
# torch (b, c, h, w) in [0, 1] -> numpy (b, h, w, c) [0, 255]
# watermarking libary expects input as cv2 BGR format
for k in range(image_np.shape[0]):
image_np[k] = self.encoder.encode(image_np[k], "dwtDct")
image = torch.from_numpy(
rearrange(image_np[:, :, :, ::-1], "(n b) h w c -> n b c h w", n=n)
).to(image.device)
image = torch.clamp(image / 255, min=0.0, max=1.0)
if squeeze:
image = image[0]
return image
# A fixed 48-bit message that was choosen at random
# WATERMARK_MESSAGE = 0xB3EC907BB19E
WATERMARK_MESSAGE = 0b101100111110110010010000011110111011000110011110
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
WATERMARK_BITS = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]
embed_watermark = WatermarkEmbedder(WATERMARK_BITS)
def get_unique_embedder_keys_from_conditioner(conditioner):
return list({x.input_key for x in conditioner.embedders})
def perform_save_locally(save_path, samples):
os.makedirs(os.path.join(save_path), exist_ok=True)
base_count = len(os.listdir(os.path.join(save_path)))
samples = embed_watermark(samples)
for sample in samples:
sample = 255.0 * rearrange(sample.cpu().numpy(), "c h w -> h w c")
Image.fromarray(sample.astype(np.uint8)).save(
os.path.join(save_path, f"{base_count:09}.png")
)
base_count += 1
class Img2ImgDiscretizationWrapper:
"""
wraps a discretizer, and prunes the sigmas
params:
strength: float between 0.0 and 1.0. 1.0 means full sampling (all sigmas are returned)
"""
def __init__(self, discretization, strength: float = 1.0):
self.discretization = discretization
self.strength = strength
assert 0.0 <= self.strength <= 1.0
def __call__(self, *args, **kwargs):
# sigmas start large first, and decrease then
sigmas = self.discretization(*args, **kwargs)
print(f"sigmas after discretization, before pruning img2img: ", sigmas)
sigmas = torch.flip(sigmas, (0,))
sigmas = sigmas[: max(int(self.strength * len(sigmas)), 1)]
print("prune index:", max(int(self.strength * len(sigmas)), 1))
sigmas = torch.flip(sigmas, (0,))
print(f"sigmas after pruning: ", sigmas)
return sigmas
def do_sample(
model,
sampler,
value_dict,
num_samples,
H,
W,
C,
F,
force_uc_zero_embeddings: Optional[List] = None,
batch2model_input: Optional[List] = None,
return_latents=False,
filter=None,
device="cuda",
):
if force_uc_zero_embeddings is None:
force_uc_zero_embeddings = []
if batch2model_input is None:
batch2model_input = []
with torch.no_grad():
with autocast(device) as precision_scope:
with model.ema_scope():
num_samples = [num_samples]
batch, batch_uc = get_batch(
get_unique_embedder_keys_from_conditioner(model.conditioner),
value_dict,
num_samples,
)
for key in batch:
if isinstance(batch[key], torch.Tensor):
print(key, batch[key].shape)
elif isinstance(batch[key], list):
print(key, [len(l) for l in batch[key]])
else:
print(key, batch[key])
c, uc = model.conditioner.get_unconditional_conditioning(
batch,
batch_uc=batch_uc,
force_uc_zero_embeddings=force_uc_zero_embeddings,
)
for k in c:
if not k == "crossattn":
c[k], uc[k] = map(
lambda y: y[k][: math.prod(num_samples)].to(device), (c, uc)
)
additional_model_inputs = {}
for k in batch2model_input:
additional_model_inputs[k] = batch[k]
shape = (math.prod(num_samples), C, H // F, W // F)
randn = torch.randn(shape).to(device)
def denoiser(input, sigma, c):
return model.denoiser(
model.model, input, sigma, c, **additional_model_inputs
)
samples_z = sampler(denoiser, randn, cond=c, uc=uc)
samples_x = model.decode_first_stage(samples_z)
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
if filter is not None:
samples = filter(samples)
if return_latents:
return samples, samples_z
return samples
def get_batch(keys, value_dict, N: Union[List, ListConfig], device="cuda"):
# Hardcoded demo setups; might undergo some changes in the future
batch = {}
batch_uc = {}
for key in keys:
if key == "txt":
batch["txt"] = (
np.repeat([value_dict["prompt"]], repeats=math.prod(N))
.reshape(N)
.tolist()
)
batch_uc["txt"] = (
np.repeat([value_dict["negative_prompt"]], repeats=math.prod(N))
.reshape(N)
.tolist()
)
elif key == "original_size_as_tuple":
batch["original_size_as_tuple"] = (
torch.tensor([value_dict["orig_height"], value_dict["orig_width"]])
.to(device)
.repeat(*N, 1)
)
elif key == "crop_coords_top_left":
batch["crop_coords_top_left"] = (
torch.tensor(
[value_dict["crop_coords_top"], value_dict["crop_coords_left"]]
)
.to(device)
.repeat(*N, 1)
)
elif key == "aesthetic_score":
batch["aesthetic_score"] = (
torch.tensor([value_dict["aesthetic_score"]]).to(device).repeat(*N, 1)
)
batch_uc["aesthetic_score"] = (
torch.tensor([value_dict["negative_aesthetic_score"]])
.to(device)
.repeat(*N, 1)
)
elif key == "target_size_as_tuple":
batch["target_size_as_tuple"] = (
torch.tensor([value_dict["target_height"], value_dict["target_width"]])
.to(device)
.repeat(*N, 1)
)
else:
batch[key] = value_dict[key]
for key in batch.keys():
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
batch_uc[key] = torch.clone(batch[key])
return batch, batch_uc
def get_input_image_tensor(image: Image.Image, device="cuda"):
w, h = image.size
print(f"loaded input image of size ({w}, {h})")
width, height = map(
lambda x: x - x % 64, (w, h)
) # resize to integer multiple of 64
image = image.resize((width, height))
image_array = np.array(image.convert("RGB"))
image_array = image_array[None].transpose(0, 3, 1, 2)
image_tensor = torch.from_numpy(image_array).to(dtype=torch.float32) / 127.5 - 1.0
return image_tensor.to(device)
def do_img2img(
img,
model,
sampler,
value_dict,
num_samples,
force_uc_zero_embeddings=[],
additional_kwargs={},
offset_noise_level: float = 0.0,
return_latents=False,
skip_encode=False,
filter=None,
device="cuda",
):
with torch.no_grad():
with autocast(device) as precision_scope:
with model.ema_scope():
batch, batch_uc = get_batch(
get_unique_embedder_keys_from_conditioner(model.conditioner),
value_dict,
[num_samples],
)
c, uc = model.conditioner.get_unconditional_conditioning(
batch,
batch_uc=batch_uc,
force_uc_zero_embeddings=force_uc_zero_embeddings,
)
for k in c:
c[k], uc[k] = map(lambda y: y[k][:num_samples].to(device), (c, uc))
for k in additional_kwargs:
c[k] = uc[k] = additional_kwargs[k]
if skip_encode:
z = img
else:
z = model.encode_first_stage(img)
noise = torch.randn_like(z)
sigmas = sampler.discretization(sampler.num_steps)
sigma = sigmas[0].to(z.device)
if offset_noise_level > 0.0:
noise = noise + offset_noise_level * append_dims(
torch.randn(z.shape[0], device=z.device), z.ndim
)
noised_z = z + noise * append_dims(sigma, z.ndim)
noised_z = noised_z / torch.sqrt(
1.0 + sigmas[0] ** 2.0
) # Note: hardcoded to DDPM-like scaling. need to generalize later.
def denoiser(x, sigma, c):
return model.denoiser(model.model, x, sigma, c)
samples_z = sampler(denoiser, noised_z, cond=c, uc=uc)
samples_x = model.decode_first_stage(samples_z)
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
if filter is not None:
samples = filter(samples)
if return_latents:
return samples, samples_z
return samples