Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
import pandas_profiling as pp
|
2 |
import pandas as pd
|
|
|
|
|
3 |
from datasets import load_dataset
|
4 |
from tensorflow.python.framework import tensor_shape
|
5 |
|
@@ -135,7 +137,8 @@ def fn( text1, text2, num, slider1, slider2, single_checkbox,
|
|
135 |
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
|
136 |
model = TFAutoModel.from_pretrained(model_ckpt, from_pt=True)
|
137 |
|
138 |
-
TensorShape([1, 768])
|
|
|
139 |
|
140 |
embeddings_dataset = clinical_dataset.map(
|
141 |
lambda x: {"embeddings": get_embeddings(x["text"]).numpy()[0]})
|
|
|
1 |
import pandas_profiling as pp
|
2 |
import pandas as pd
|
3 |
+
import tensorflow as tf
|
4 |
+
|
5 |
from datasets import load_dataset
|
6 |
from tensorflow.python.framework import tensor_shape
|
7 |
|
|
|
137 |
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
|
138 |
model = TFAutoModel.from_pretrained(model_ckpt, from_pt=True)
|
139 |
|
140 |
+
# TensorShape([1, 768])
|
141 |
+
tf.shape([1, 768])
|
142 |
|
143 |
embeddings_dataset = clinical_dataset.map(
|
144 |
lambda x: {"embeddings": get_embeddings(x["text"]).numpy()[0]})
|